WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in ...(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in a vacuum furnace for 90 min.Density,phase composition,and microstructure of sintered samples were investigated.Hardness,compressive strength,wear resistance and coefficient of thermal expansion(CTE)were estimated.The results revealed the improvement of the density with the addition of WC.XRD results revealed the formation of new FCC chromium carbide phases.Scanning electron microscopy(SEM)results show a good distribution of the carbide phases over the alloy matrix.The CTE was decreased gradually by increasing the WC content.Compressive strength was improved by WC addition.A mathematical model was established to predict the behavior of the strength of the HEA samples.The hardness of the investigated HEAs was increased gradually with the increasing of WC content about 20.35%.Also,the wear rate of HEA without WC is 1.70×10^(−4)mm^(3)/(N·m),which is approximately 4.5 times the wear rate of 20 wt%WC HEA(3.81×10^(−5)mm^(3)/(N·m)),which means that wear resistance was significantly improved with the increase of WC content.展开更多
Electro-thermal explosion directional spraying was used to prepare the stellite coating on substrate of the AISI 1045 steel. The morphologies of cross-section and worn scar, porosity, distribution of elements, micro- ...Electro-thermal explosion directional spraying was used to prepare the stellite coating on substrate of the AISI 1045 steel. The morphologies of cross-section and worn scar, porosity, distribution of elements, micro- hardness and wear resistance of the coating were determined by means of SEM, EDAX, micro-hardness tester and sliding wear tester. Because of the compact construction, good bonding and high hardness, the coating is characterized by good wear resistance. The results show that the mainly failure mode of the stellite coating is micro- plowing.展开更多
Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t...Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr...A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.展开更多
In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in wit...In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in with/without the addition of La2O3. Scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD) and microhardness tester were employed to investigate the surface morphologies, surface element distributions, microstructures, phase constitutions and microhardness of the coatings. Friction-wear tests of the P110 steel substrate and the coatings were conducted in air at ambient temperature and humidity. The results show that 'uniform and continuous coatings are formed on P110 steel regardless of adding La2O3 or not. The chromium coatings consist of Cr23C6, Cr7C3, and (Cr, Fe)7C3. The La2O3-added chromium coating is more beneficial in terms of surface morphology, microstructure, thickness and microharduess as compared with the coating without adding La2O3. Chromizing treatment significantly improves the surface hardness and wear resistance of the P110 steel. The wear resistance of the tested samples can be sorted in the following sequence: La2O3-coating 〉 no RE-coating 〉bare P110 steel.展开更多
In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstruc...In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.展开更多
Massive vanadium additions as hard phases in powder metallurgy high-speed steels(PM HSS)lead to higher cost and bad machinability.In this study,ultrahigh alloy PM HSS with CPM121(10W-5Mo-4Cr-10V-9Co,wt.%)as the basic ...Massive vanadium additions as hard phases in powder metallurgy high-speed steels(PM HSS)lead to higher cost and bad machinability.In this study,ultrahigh alloy PM HSS with CPM121(10W-5Mo-4Cr-10V-9Co,wt.%)as the basic composition,was directly compacted and activation sintered with near-full density(>99.0%)using pre-oxidized and ball-mixed element and carbide powders.Niobium-alloyed steels(w(V)+w(Nb)=10 wt.%)show higher hardness and wear resistance,superior secondary-hardening ability and temper resistance.But excess niobium addition(>5 wt.%)leads to coarsened carbides and deteriorated toughness.EPMA results proved that niobium tends to distribute in MC carbides and forces element W to form M6C and WC carbides.Further,the role of rotary forging on properties of niobium-alloyed steels(S3)was researched.After rotary forging with deformation of 40%,the bending strength and fracture toughness of niobium-alloyed steels could be further improved by 20.74%and 43.86%compared with those of sample S3 without rotary forging,respectively.展开更多
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters...In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.展开更多
The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
In this study,the effect of welding parameters on the microstructure and mechanical properties of the dissimilar resistance spot welded DP1000–QP1180 joints was investigated.Heat affected zone(HAZ)width of QP1180 sid...In this study,the effect of welding parameters on the microstructure and mechanical properties of the dissimilar resistance spot welded DP1000–QP1180 joints was investigated.Heat affected zone(HAZ)width of QP1180 side was smaller than that of DP1000 side.HAZ width and indentation depth increased with increasing welding current and welding time.The nugget size increased with increasing welding current whereas it increased at lower currents and decreased at higher currents with increasing welding time.The lowest hardness was on the DP1000 side.On the QP1180 side,the center of HAZ had the peak hardness.With increasing welding current,hardness values throughout the weld zone decreased and the tensile shear load increased.At lower welding currents,the welding time did not affect the tensile shear load.Tensile elongation decreased with the increase of welding time,whereas there is no relationship between the welding current and elongation.The spot-welded joints having higher strength exhibited a more ductile fracture characteristic.展开更多
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s...Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.展开更多
The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-...The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.展开更多
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction....The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.展开更多
The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were ...The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.展开更多
A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstr...A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.展开更多
In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,g...In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,growth behavior,mechanical properties,adhesion strength and wear behavior of the coatings.The results show that finer Ti(C,N)grain size leads to higher nucleation density and lower growth rate of coatings,indicating the crystallite size of the TiAlN coatings decreases with decreasing Ti(C,N)grain size.Nanoindentation tests show that the coatings deposited on cermets of the finest grain size exhibit the highest hardness(H),elastic modulus(E),H/E and H3/E2 of 34.5 GPa,433.2 GPa,0.080 and 0.22,respectively.The adhesion strength between coating and substrate is also enhanced with decreasing Ti(C,N)grain size by scratch test,which corresponds to the grain size and H/E and H3/E2 of the coating.Besides,the lower surface roughness and better mechanical properties of the coating deposited on finer grained cermet contribute to the better wear resistance of the coating.展开更多
It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance...It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.展开更多
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
文摘(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in a vacuum furnace for 90 min.Density,phase composition,and microstructure of sintered samples were investigated.Hardness,compressive strength,wear resistance and coefficient of thermal expansion(CTE)were estimated.The results revealed the improvement of the density with the addition of WC.XRD results revealed the formation of new FCC chromium carbide phases.Scanning electron microscopy(SEM)results show a good distribution of the carbide phases over the alloy matrix.The CTE was decreased gradually by increasing the WC content.Compressive strength was improved by WC addition.A mathematical model was established to predict the behavior of the strength of the HEA samples.The hardness of the investigated HEAs was increased gradually with the increasing of WC content about 20.35%.Also,the wear rate of HEA without WC is 1.70×10^(−4)mm^(3)/(N·m),which is approximately 4.5 times the wear rate of 20 wt%WC HEA(3.81×10^(−5)mm^(3)/(N·m)),which means that wear resistance was significantly improved with the increase of WC content.
文摘Electro-thermal explosion directional spraying was used to prepare the stellite coating on substrate of the AISI 1045 steel. The morphologies of cross-section and worn scar, porosity, distribution of elements, micro- hardness and wear resistance of the coating were determined by means of SEM, EDAX, micro-hardness tester and sliding wear tester. Because of the compact construction, good bonding and high hardness, the coating is characterized by good wear resistance. The results show that the mainly failure mode of the stellite coating is micro- plowing.
文摘Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.
基金Project(E2013402056)supported by the Natural Science Foundation of Hebei Province,ChinaProject(QN2014002)supported by the Science and Technology Research Foundation of Hebei Education Department for Young Teachers in University,ChinaProject(51601053)supported by the National Natural Science Foundation of China
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金National Key Laboratory of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2022-4)to provide fund for conducting experiments。
文摘A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.
基金Project(2007CB607603) supported by the National Basic Research Program of China
文摘In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in with/without the addition of La2O3. Scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD) and microhardness tester were employed to investigate the surface morphologies, surface element distributions, microstructures, phase constitutions and microhardness of the coatings. Friction-wear tests of the P110 steel substrate and the coatings were conducted in air at ambient temperature and humidity. The results show that 'uniform and continuous coatings are formed on P110 steel regardless of adding La2O3 or not. The chromium coatings consist of Cr23C6, Cr7C3, and (Cr, Fe)7C3. The La2O3-added chromium coating is more beneficial in terms of surface morphology, microstructure, thickness and microharduess as compared with the coating without adding La2O3. Chromizing treatment significantly improves the surface hardness and wear resistance of the P110 steel. The wear resistance of the tested samples can be sorted in the following sequence: La2O3-coating 〉 no RE-coating 〉bare P110 steel.
基金Project(2016YFB0700300)supported by the National Key Research and Development Program of China。
文摘In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.
基金Projects(51771237,51704257)supported by the National Natural Science Foundation of ChinaProject(2019JJ60019)supported by the Joint Fund of Hunan Province,ChinaProject(17QDZ25)supported by the School Level Fund of Xiangtan University,China。
文摘Massive vanadium additions as hard phases in powder metallurgy high-speed steels(PM HSS)lead to higher cost and bad machinability.In this study,ultrahigh alloy PM HSS with CPM121(10W-5Mo-4Cr-10V-9Co,wt.%)as the basic composition,was directly compacted and activation sintered with near-full density(>99.0%)using pre-oxidized and ball-mixed element and carbide powders.Niobium-alloyed steels(w(V)+w(Nb)=10 wt.%)show higher hardness and wear resistance,superior secondary-hardening ability and temper resistance.But excess niobium addition(>5 wt.%)leads to coarsened carbides and deteriorated toughness.EPMA results proved that niobium tends to distribute in MC carbides and forces element W to form M6C and WC carbides.Further,the role of rotary forging on properties of niobium-alloyed steels(S3)was researched.After rotary forging with deformation of 40%,the bending strength and fracture toughness of niobium-alloyed steels could be further improved by 20.74%and 43.86%compared with those of sample S3 without rotary forging,respectively.
基金Project(2020E0264) supported by the Xinjiang Science and Technology Project Plan of Autonomous Region,ChinaProject(2020D01C030) supported by the Autonomous Region Natural Science Foundation,China。
文摘In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金Project supported by Beycelik Gestamp Inc.,Turkey
文摘In this study,the effect of welding parameters on the microstructure and mechanical properties of the dissimilar resistance spot welded DP1000–QP1180 joints was investigated.Heat affected zone(HAZ)width of QP1180 side was smaller than that of DP1000 side.HAZ width and indentation depth increased with increasing welding current and welding time.The nugget size increased with increasing welding current whereas it increased at lower currents and decreased at higher currents with increasing welding time.The lowest hardness was on the DP1000 side.On the QP1180 side,the center of HAZ had the peak hardness.With increasing welding current,hardness values throughout the weld zone decreased and the tensile shear load increased.At lower welding currents,the welding time did not affect the tensile shear load.Tensile elongation decreased with the increase of welding time,whereas there is no relationship between the welding current and elongation.The spot-welded joints having higher strength exhibited a more ductile fracture characteristic.
基金Project(2008BAE63B00) supported by the National Key Technologies Research and Development Program of China
文摘Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.
基金Project(51404302)supported by the National Natural Science Foundation of ChinaProject(QJ2018003A)supported by the Youth Scientific Research Foundation of the Central South University of Forestry and Technology,China。
文摘The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.
基金Project(51901207) supported by the National Natural Science Foundation of ChinaProject(2018M632796) supported by the China Postdoctoral Science FoundationProjects(19A430024, 21A430037) supported by the Plan of Henan Key Scientific Research Project of Universities,China。
文摘The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.
文摘The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.
基金Projects(20476106,50721003 and 20636020) supported by the National Natural Science Foundation of ChinaProject(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar of China+1 种基金Project(2006AA03Z511) supported by the National High Technology Research and Development Program of ChinaProject supported by the 111 Program of Chinese Ministry of Education
文摘A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.
基金Projects(51634006,51575368)supported by the National Natural Science Foundation of ChinaProject(2017GZ0041)supported by Science and Technology Support Program of Sichuan Province,China。
文摘In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,growth behavior,mechanical properties,adhesion strength and wear behavior of the coatings.The results show that finer Ti(C,N)grain size leads to higher nucleation density and lower growth rate of coatings,indicating the crystallite size of the TiAlN coatings decreases with decreasing Ti(C,N)grain size.Nanoindentation tests show that the coatings deposited on cermets of the finest grain size exhibit the highest hardness(H),elastic modulus(E),H/E and H3/E2 of 34.5 GPa,433.2 GPa,0.080 and 0.22,respectively.The adhesion strength between coating and substrate is also enhanced with decreasing Ti(C,N)grain size by scratch test,which corresponds to the grain size and H/E and H3/E2 of the coating.Besides,the lower surface roughness and better mechanical properties of the coating deposited on finer grained cermet contribute to the better wear resistance of the coating.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by International Cooperative Scientific Research Platform of SUES,China。
文摘It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.