Based on the rock typing method of pore geometry and structure(PGS), rock samples from carbonate reservoir A and carbonate reservoir B were classified using data of routine and special core analysis and thin section i...Based on the rock typing method of pore geometry and structure(PGS), rock samples from carbonate reservoir A and carbonate reservoir B were classified using data of routine and special core analysis and thin section images, and microfractures in the carbonate reservoir samples were identified and characterized. Establishment of rock types demonstrates that microfractures have developed in all rock types in carbonate reservoir A, but only partially in certain rock types in carbonate reservoir B with porosity of 1%–11%, less vuggy, and hardness of medium hard to hard. The cut-off porosity was determined for each type of rock to distinguish samples with and without conductive microfractures. The impact of conductive microfractures on improving permeability was analyzed. On the basis of relationship of permeability and original initial water saturation, the permeability equation was derived by certain special core analysis data with conductive microfractures selected by PGS equation, and the permeability of samples with conductive microfractures has been successfully predicted.展开更多
Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of mini...Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.展开更多
Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient ...Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient and strike factor are introduced into the models to quantitatively characterize the connectivity and strike of fracture network,respectively.The influences of fracture aperture,fracture strike and fracture connectivity on the permeability of porous media are studied by using multi-relaxation-time lattice Boltzmann model to simulate fluid flow in them.The greater the strike factor and the smaller the tortuosity of the fractured porous media,the greater the permeability of the fractured porous media.The greater the connectivity coefficient of the fracture network is,the greater the permeability of the fracture-pore media is,and the more likely dominant channel effect occurs.The fracture network connectivity has stronger influence on seepage ability of fracture-pore media than fracture aperture and fracture strike.The tortuosity and strike factor of fracture network in fractured porous media are in polynomial relation,while the permeability and fracture network connectivity coefficient of the fracture-pore media meet an exponential relation.展开更多
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa...Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.展开更多
Tight oil and gas in the Cretaceous has been found in the Liuhe Basin,but the rules of tight reservoir and oil and gas accumulation are not clear.This paper discusses the developmental characteristics and evolution la...Tight oil and gas in the Cretaceous has been found in the Liuhe Basin,but the rules of tight reservoir and oil and gas accumulation are not clear.This paper discusses the developmental characteristics and evolution law of pores and fractures in the Cretaceous tight reservoir in the Liuhe Basin,and reveals its controlling effect on tight oil and gas accumulation.The results show that intercrystalline pores,intergranular pores and dissolution pores are scattered and only developed in shallow tight reservoirs,while microfractures are developed in both shallow and deep layers,which are the main type of reservoir space in the study area.The results of mercury intrusion porosimetry and nitrogen gas adsorption show that with the increase of depth,the proportion of macropores(microcracks)increases,while the proportion of micropores decreases.There are two stages of microfractures developed in the study area,corresponding to the initial fault depression stage from late Jurassic to early late Cretaceous and compressional uplift at the end of late Cretaceous.According to the principle of“inversion and back-stripping method”,combined with the data of optical microscopy and inclusions,the time of each key diagenesis and its contribution to porosity are revealed,and the porosity evolution history of reservoirs in different diagenetic stages is quantitatively restored.The porosity reduction rate of compaction can reach more than 80%,which is the main reason for reservoir densification.The relationship between pore evolution history and oil and gas accumulation history reveals that during the oil and gas filling period of the Xiahuapidianzi Formation(90-85 Ma),the reservoir porosity is only 1.15%,but the development of microfractures in the first stage of the reservoir is conducive to oil and gas accumulation.展开更多
Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to sol...Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to solve the problem, extensive research has been carried out to study the major factors wh1ch rnay affect stress deterrnlnation. They include the rock behaviour and the stress state. For rocks showing non-isotropic behaviour, the values of Young’s modulus and Poisson ratio vary with the orientation of loading and measurement. Stress condition in the rock affects the rock behaviour. Furtherrnore, the loading condition on rock samples durlng laboratory tests is different from in the field and therefore the determined e1astic constants may not represent the field condi tion. In general , the Young’s modulus may depend on the orientation, the loading path, the stress magnitude and the stress ratio. This paper examines in detail the effects of those factors, especially for rocks showing transversely isotropic behaviour. It is found that the discrepancy of stress results from field measurernents in this type of rock is mainly due to over simplification of the rock behavior and inadequate use of elastic constants of the rock during stress calculation. A case study is given,which indicates the significance of these factors and demonstrates the proper procedure for stress calculation from measurements.展开更多
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch...Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region.展开更多
Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres...Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.展开更多
Constrained by the geological burial history of Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin, the diagenetic physical simulation experiment was carried out with the low-mature sandstone samp...Constrained by the geological burial history of Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin, the diagenetic physical simulation experiment was carried out with the low-mature sandstone samples taken from the outcrop area. Then, coupling with the regional geological data, the reformation of reservoirs with different diagenetic intensities by microfractures and the significance of microfractures for development of high-quality reservoirs were discussed. The results show that the large-scale microfractures were formed in the stage of late rapid deep burial, roughly equivalent to the period when organic acids were filled. The microfractures created good conditions for migration of oil and gas in deep and ultra-deep clastic rocks, and also enabled the transport of organic acids to the reservoirs for ensuing the late continuous dissolution of cements and particles. The existence of matrix pores and microfractures in the reservoirs before the rapid deep burial determined how the microfractures formed during rapid deep burial improved the reservoir quality. If matrix pores and microfractures were more developed and the cementation degree was lower before the rapid deep burial, the microfractures would be more developed and the dissolution degree would be higher during the late rapid deep burial, and so the reservoir quality would be improved more greatly, which can increase the reservoir permeability by up to 55%. If cementation was very strong, but matrix pores were not developed and microfractures existed locally before the rapid deep burial, the microfractures would also be more developed during the late rapid deep burial, which can increase the reservoir permeability by 43%. If cementation was strong, matrix pores were absent, and microfractures were not developed, limited microfractures would be formed during the late rapid deep burial, which can increase the reservoir permeability by only 16%. Formation of large-scale microfractures during late rapid deep burial and promotion of such microfractures to the dissolution of organic acids are considered as key diagenetic factors for the development of deep and ultra-deep high-quality reservoirs.展开更多
基金P3MI Bandung Institute of Technology for providing the financial support to conduct this study。
文摘Based on the rock typing method of pore geometry and structure(PGS), rock samples from carbonate reservoir A and carbonate reservoir B were classified using data of routine and special core analysis and thin section images, and microfractures in the carbonate reservoir samples were identified and characterized. Establishment of rock types demonstrates that microfractures have developed in all rock types in carbonate reservoir A, but only partially in certain rock types in carbonate reservoir B with porosity of 1%–11%, less vuggy, and hardness of medium hard to hard. The cut-off porosity was determined for each type of rock to distinguish samples with and without conductive microfractures. The impact of conductive microfractures on improving permeability was analyzed. On the basis of relationship of permeability and original initial water saturation, the permeability equation was derived by certain special core analysis data with conductive microfractures selected by PGS equation, and the permeability of samples with conductive microfractures has been successfully predicted.
基金Supported by the National Natural Science Foundation ofChina (No. 30070224)the Key Project of the ScientificResearch Foundation for Medical Science and Public Healthof PLA(No. 01Z072)
文摘Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.
基金Supported by the Science and Technology Major Project of PetroChina(2016E-06)National Natural Science Foundation of China(U1562217)。
文摘Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient and strike factor are introduced into the models to quantitatively characterize the connectivity and strike of fracture network,respectively.The influences of fracture aperture,fracture strike and fracture connectivity on the permeability of porous media are studied by using multi-relaxation-time lattice Boltzmann model to simulate fluid flow in them.The greater the strike factor and the smaller the tortuosity of the fractured porous media,the greater the permeability of the fractured porous media.The greater the connectivity coefficient of the fracture network is,the greater the permeability of the fracture-pore media is,and the more likely dominant channel effect occurs.The fracture network connectivity has stronger influence on seepage ability of fracture-pore media than fracture aperture and fracture strike.The tortuosity and strike factor of fracture network in fractured porous media are in polynomial relation,while the permeability and fracture network connectivity coefficient of the fracture-pore media meet an exponential relation.
基金the National Science Fund for Distinguished Young Scholars(No.52225403)the Natural Science Foundation of Shanxi Province(No.202303021212073)the National Natural Science Foundation of China(No.52104210)。
文摘Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.
基金founded by the National Natural Science Foundation of China(41922015)。
文摘Tight oil and gas in the Cretaceous has been found in the Liuhe Basin,but the rules of tight reservoir and oil and gas accumulation are not clear.This paper discusses the developmental characteristics and evolution law of pores and fractures in the Cretaceous tight reservoir in the Liuhe Basin,and reveals its controlling effect on tight oil and gas accumulation.The results show that intercrystalline pores,intergranular pores and dissolution pores are scattered and only developed in shallow tight reservoirs,while microfractures are developed in both shallow and deep layers,which are the main type of reservoir space in the study area.The results of mercury intrusion porosimetry and nitrogen gas adsorption show that with the increase of depth,the proportion of macropores(microcracks)increases,while the proportion of micropores decreases.There are two stages of microfractures developed in the study area,corresponding to the initial fault depression stage from late Jurassic to early late Cretaceous and compressional uplift at the end of late Cretaceous.According to the principle of“inversion and back-stripping method”,combined with the data of optical microscopy and inclusions,the time of each key diagenesis and its contribution to porosity are revealed,and the porosity evolution history of reservoirs in different diagenetic stages is quantitatively restored.The porosity reduction rate of compaction can reach more than 80%,which is the main reason for reservoir densification.The relationship between pore evolution history and oil and gas accumulation history reveals that during the oil and gas filling period of the Xiahuapidianzi Formation(90-85 Ma),the reservoir porosity is only 1.15%,but the development of microfractures in the first stage of the reservoir is conducive to oil and gas accumulation.
文摘Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to solve the problem, extensive research has been carried out to study the major factors wh1ch rnay affect stress deterrnlnation. They include the rock behaviour and the stress state. For rocks showing non-isotropic behaviour, the values of Young’s modulus and Poisson ratio vary with the orientation of loading and measurement. Stress condition in the rock affects the rock behaviour. Furtherrnore, the loading condition on rock samples durlng laboratory tests is different from in the field and therefore the determined e1astic constants may not represent the field condi tion. In general , the Young’s modulus may depend on the orientation, the loading path, the stress magnitude and the stress ratio. This paper examines in detail the effects of those factors, especially for rocks showing transversely isotropic behaviour. It is found that the discrepancy of stress results from field measurernents in this type of rock is mainly due to over simplification of the rock behavior and inadequate use of elastic constants of the rock during stress calculation. A case study is given,which indicates the significance of these factors and demonstrates the proper procedure for stress calculation from measurements.
基金supported by the National Natural Science Foundation of China(Grant numbers 42274160 and 42074153).
文摘Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region.
基金Supported by PetroChina Science and Technology Project(2021DJ0202).
文摘Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.
基金Supported by the National Natural Scienceof China (41872113,42172109,42172108)National Key R&D Plan Project (2018YFA0702405)+1 种基金Special Science and Technology Program for Strategic Cooperation Between China National Petroleum Corporation and China University of Petroleum (Beijing)(ZLZX2020-02)China University of Petroleum (Beijing) Research Initiation Fund Project (2462020BJRC002,2462020YXZZ020)。
文摘Constrained by the geological burial history of Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin, the diagenetic physical simulation experiment was carried out with the low-mature sandstone samples taken from the outcrop area. Then, coupling with the regional geological data, the reformation of reservoirs with different diagenetic intensities by microfractures and the significance of microfractures for development of high-quality reservoirs were discussed. The results show that the large-scale microfractures were formed in the stage of late rapid deep burial, roughly equivalent to the period when organic acids were filled. The microfractures created good conditions for migration of oil and gas in deep and ultra-deep clastic rocks, and also enabled the transport of organic acids to the reservoirs for ensuing the late continuous dissolution of cements and particles. The existence of matrix pores and microfractures in the reservoirs before the rapid deep burial determined how the microfractures formed during rapid deep burial improved the reservoir quality. If matrix pores and microfractures were more developed and the cementation degree was lower before the rapid deep burial, the microfractures would be more developed and the dissolution degree would be higher during the late rapid deep burial, and so the reservoir quality would be improved more greatly, which can increase the reservoir permeability by up to 55%. If cementation was very strong, but matrix pores were not developed and microfractures existed locally before the rapid deep burial, the microfractures would also be more developed during the late rapid deep burial, which can increase the reservoir permeability by 43%. If cementation was strong, matrix pores were absent, and microfractures were not developed, limited microfractures would be formed during the late rapid deep burial, which can increase the reservoir permeability by only 16%. Formation of large-scale microfractures during late rapid deep burial and promotion of such microfractures to the dissolution of organic acids are considered as key diagenetic factors for the development of deep and ultra-deep high-quality reservoirs.