期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
1
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT HYBRID LEARNING sentiment classification
在线阅读 下载PDF
基于多模态信息融合的中文隐式情感分析 被引量:4
2
作者 张换香 李梦云 张景 《计算机工程与应用》 北大核心 2025年第2期179-190,共12页
隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方... 隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方法。通过从语音中提取音调、强度等声学特征,以及从视频中捕捉面部表情等视觉特征,辅助理解隐式情感。利用BiLSTM网络挖掘各单模态内部的上下文信息;结合多头互注意力机制分别捕捉与文本相关的语音和视觉特征,并通过迭代优化,减少非文本模态的低阶冗余信息。此外,通过设计以文本为中心的交叉注意融合模块,强化隐式文本特征表示,并处理模态间的异质性,增强隐式情感分析的综合性能。在CMUMOSI、CMU-MOSEI、MUMETA数据集上的实验结果表明,所提出的模型优于其他基线模型。这种针对隐式情感分析的多模态处理策略,充分利用语音和视觉外部知识,更全面、准确地捕捉隐式情感表达,有效提升了隐式情感分析的准确率。 展开更多
关键词 隐式情感分析 深度神经网络 多模态 注意力机制 特征融合
在线阅读 下载PDF
基于情绪词典和BERT-BiLSTM的股指预测研究 被引量:2
3
作者 张少军 苏长利 《计算机工程与应用》 北大核心 2025年第4期358-367,共10页
股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-te... 股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-term memory,BERT-BiLSTM)对在线财经新闻提取情感特征,构建了融合情感特征和股票交易特征的股指预测模型。实验对比了融合情感特征前后模型的预测能力,并探讨了不同模型、不同时间周期下预测能力的差异。实验结果表明,融合词典法和深度学习技术提取的情感特征均能提升各模型股指预测的准确率。LSTM模型相较其他实验模型在融合情感特征前后的股指预测上均表现较好。进一步的时间跨度分析表明,股指预测模型在较短的时间跨度上对股票指数涨跌的预测能力更强。为验证股指预测模型的实际价值,对沪深300指数的牛熊市和震荡市进行回测分析,结合LSTM模型和深度Q网络(deep Q-network,DQN)原理,对比了传统均线策略以及结合DQN强化学习算法后股指回测差异。回测结果表明,相比于单一的传统交易策略,结合传统交易策略和深度学习方法的股票指数预测模型在牛熊市及震荡市中均保证了正的夏普比例和累积收益率,并有效控制了最大回撤,显示出更强的市场适应性和盈利能力。 展开更多
关键词 财经新闻情感特征 股指预测 BiLSTM模型 DQN强化学习
在线阅读 下载PDF
基于前后景分割的图像情感分析
4
作者 高玮军 刘书君 孙子博 《计算机工程与应用》 北大核心 2025年第1期206-213,共8页
图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择... 图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择、特征融合和情感识别分类。现有的大部分图像情感分析工作以图像整体为单位进行输入,未能充分发挥图像中局部特征的情感作用。如果不能对图像的全局特征和局部特征作出区分,当图像出现清晰度不高、背景噪声较多等问题时,图像的全局特征就会变得较为敏感,特征提取和识别工作将会受到严重干扰,对情感分析的准确性产生一定影响。针对目前图像情感分析存在的不足,提出一种基于前后景分割的图像情感分析方法。该方法以YOLOv5为框架,引入ConvNeXt模块和AFF模块,分别进行特征提取和注意力融合。实验结果表明,与目前比较流行的几种图像情感分析方法相比,该方法对于包含更多情感信息和语义信息的场景更为适用,性能也有所提升。 展开更多
关键词 图像情感分析 前后景分割 特征融合 YOLOv5 局部特征 全局特征
在线阅读 下载PDF
基于多层注意力机制跨模态自适应融合的情感分析模型研究
5
作者 贺萍 祁铧颖 王诗怡 《计算机应用与软件》 北大核心 2025年第9期203-209,共7页
与面向文本、图像进行情感分析的研究相比,面向视频进行情感分析的研究较少,且不同模式之间跨模态关系抽取依然存在噪声与信息冗余的问题。因此,结合文本、视频两种数据模态提出一种基于多层注意力机制的跨模态自适应融合的情感分析模型... 与面向文本、图像进行情感分析的研究相比,面向视频进行情感分析的研究较少,且不同模式之间跨模态关系抽取依然存在噪声与信息冗余的问题。因此,结合文本、视频两种数据模态提出一种基于多层注意力机制的跨模态自适应融合的情感分析模型(MACSF)。该文将提取到的文本与视频特征在多头层次注意(MHA)下跨模态分层融合两次,得到具有交互语义的二次融合特征;将文本特征和二次融合的特征通过自适应跨模态集成得到最终融合特征;将融合特征输入多层感知机和Softmax函数得到情感分类结果。在公开数据集MOSI和MOSEI上实验验证,该文模型有效弥补了跨模态交互中存在的噪声问题,提高了情感分类的效果。 展开更多
关键词 跨模态 特征融合 情感分析 注意力机制
在线阅读 下载PDF
多通道句法门控图神经网络用于句子级情感分析
6
作者 张吴波 邹旺 +2 位作者 熊黎 戴顺鄂 吴文欢 《计算机工程与应用》 北大核心 2025年第8期135-144,共10页
情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充... 情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充分结合文本的单词特征、依存特征和词性特征。针对以上问题,提出一种多通道句法门控图神经网络的句子级情感分析方法(MSGNN)。该模型以句子的依存句法关系图为骨架,词性特征、单词特征和依存特征作为节点特征信息;利用三通道的门控图神经网络分别学习三种特征;采用图卷积神经网络聚合节点的特征信息。在SST-1、SST-2、MR三种基准数据集上的实验结果表明该模型相比基线模型的性能有所提升。 展开更多
关键词 情感分析 句子级图神经网络 依存特征 门控图神经网络
在线阅读 下载PDF
多模态分级特征映射与融合表征方法研究 被引量:1
7
作者 郭小宇 马静 陈杰 《计算机工程与应用》 北大核心 2025年第6期171-182,共12页
多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型... 多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型的中间层抽取由低级别到高级别的特征,基于特征重用的思想映射与融合文本与图像模态不同级别的特征,捕捉文本与图像模态之间的内部关联,充分融合两种模态之间的特征。将分级特征映射与融合表征馈入分类器,应用于多模态舆情的情感分类中,同时将构建的表征方法与基线表征方法进行对比分析。实验结果表明,提出的表征方法在微博舆情和MVSA-Multiple数据集上的情感分类性能均超越了所有基线模型,其中在微博数据集上F1值提升了0.0137,在MVSA-Multiple数据集上F1值提升了0.0222。图像特征能够提升文本单模态特征下的情感分类准确率,但是其提升程度与融合策略密切相关;多模态分级特征映射与融合表征方法能够有效映射文本与图像特征之间的关系,提升多模态舆情的情感分类效果。 展开更多
关键词 多模态特征融合 分级特征 映射与融合 情感分类 特征表示
在线阅读 下载PDF
面向情感语义不一致的多模态情感分析方法
8
作者 罗渊贻 吴锐 +1 位作者 刘家锋 唐降龙 《计算机研究与发展》 北大核心 2025年第2期374-382,共9页
多模态情感分析是利用多种模式的主观信息对情感进行分析判断的一种多模态任务.情感表达具有主观性,在某些场景下不同模态的情感表达不一致,甚至存在相悖的情况,这会削弱多模态协同决策的效果.针对不同模态间情感语义不一致的问题,提出... 多模态情感分析是利用多种模式的主观信息对情感进行分析判断的一种多模态任务.情感表达具有主观性,在某些场景下不同模态的情感表达不一致,甚至存在相悖的情况,这会削弱多模态协同决策的效果.针对不同模态间情感语义不一致的问题,提出一种多模态学习方法,学习情感语义表达一致的模态特征表示.为了在不影响模态原始信息的同时,提高各模态的共性特征表达并增加模态间的动态交互,首先学习每个模态的共性特征表示,然后利用交叉注意力使单个模态能有效从其余模态的共性特征表示中获取辅助信息.在模态融合模块,以软注意力机制为基础提出模态注意力,对情感语义表达一致的各模态特征表示进行加权连接,以增大强模态的表达,抑制弱模态对任务的影响.提出的模型在情感分析数据集MOSI,MOSEI,CH-SIMS上的实验结果均优于对比模型,表明在多模态情感分析任务中考虑情感语义不一致问题的必要性与合理性. 展开更多
关键词 多模态情感分析 共性特征 情感语义不一致 注意力机制
在线阅读 下载PDF
基于改进的FGM-CM-BERT模型多模态情感分析方法
9
作者 李仁正 高冠东 +1 位作者 宋胜尊 肖珂 《河北大学学报(自然科学版)》 北大核心 2025年第2期192-203,共12页
针对语音文本多模态情感分析方法中泛化能力弱和特征融合效率低的问题,提出了一种改进的FGM-CM-BERT模型,改进快速梯度法(FGM)以对抗训练提升模型泛化能力,并采用多头注意力机制提取融合多模态特征,以提升算法准确度.首先,根据多模态数... 针对语音文本多模态情感分析方法中泛化能力弱和特征融合效率低的问题,提出了一种改进的FGM-CM-BERT模型,改进快速梯度法(FGM)以对抗训练提升模型泛化能力,并采用多头注意力机制提取融合多模态特征,以提升算法准确度.首先,根据多模态数据特征,通过一种基于输入数据特征的自适应参数调整策略来改进FGM权重函数,在embedding层增加自适应扰动提升模型泛化能力;其次,在跨模态交互层提出利用多头自注意力机制,通过将文本查询和音频键值对交叉融合,在特征融合效率与模型复杂度之间达到了较好的平衡;最后,实验采用CMU-MOSI和CMU-MOSEI数据集,对比了常用的15个基线模型,结果表明:该模型在七类情绪评分分类及二元情绪分类的准确率较基线模型均有所提升,分别达到了48.2%和87.5%,验证了该方法的有效性. 展开更多
关键词 多模态情感分析 快速梯度法 多头注意力机制 对抗训练 自适应扰动 跨模态特征融合
在线阅读 下载PDF
融合字符与词语特征的混合神经网络情感分析模型
10
作者 李嘉琦 杨环 高辉 《计算机工程与应用》 北大核心 2025年第13期227-234,共8页
汉语语句中没有明显的分隔符,这导致传统基于词语划分的编码模型可能会丢失句子内部的语义信息,特别是在处理情感分析等任务时显得更为复杂。为克服这一难题,借鉴字符级和词语级特征融合的思路,提出了一种融合特征模型。该模型将句子划... 汉语语句中没有明显的分隔符,这导致传统基于词语划分的编码模型可能会丢失句子内部的语义信息,特别是在处理情感分析等任务时显得更为复杂。为克服这一难题,借鉴字符级和词语级特征融合的思路,提出了一种融合特征模型。该模型将句子划分为两种级别的编码,采用Bi-GRU结构提取字符序列中的包含上下文信息的特征关系,并引入注意力机制,使用CNN网络结构提取词语之间的局部特征关系,利用不同大小的卷积核获得不同距离的局部特征,最后将二者特征进行融合,获得全局特征信息。在三个公开数据集Weibo、CIN和Chnsenticorp上的准确率分别达到了81.32%、76.03%和96.28%,相比于以字符编码为基础的MCNN-IFGS模型,分别提高了1.02个百分点、0.13个百分点和1.05个百分点,结果表明在中文情感分析任务中,融合特征模型的表现明显优于单独使用字符级或词语级特征的模型,能够显著提升模型的性能和鲁棒性,更有效地提取文本的语义信息。 展开更多
关键词 情感分析 混合神经网络 字符特征 词语特征 双向门控循环单元
在线阅读 下载PDF
差异特征导向的解耦多模态情感分析
11
作者 李志欣 刘鸣琦 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期57-71,共15页
特征解耦能够将不同模态特征解耦为相似特征和差异特征,以缓和模态间的贡献度差异。但由于差异特征不仅包含互补信息,同时也包含一致信息,因此差异特征存在显著分布差异。传统特征解耦方法忽视了差异特征内在的冲突,从而导致预测不准确... 特征解耦能够将不同模态特征解耦为相似特征和差异特征,以缓和模态间的贡献度差异。但由于差异特征不仅包含互补信息,同时也包含一致信息,因此差异特征存在显著分布差异。传统特征解耦方法忽视了差异特征内在的冲突,从而导致预测不准确。为了解决这一问题,本文提出一种差异特征导向的解耦多模态情感分析方法,利用特征表示学习和对比学习的思想,提取更为有效的特征并扩大差异特征间的差异。首先部署一个特征提取模块,针对3种模态使用不同的特征提取方法以提取到更为有效的特征;其次使用共同编码器与独立编码器解耦3种模态特征,并使用一个多模态变压器进行特征融合;最后,为了扩大差异特征间的差异,设计用于优化的损失函数。在2个大规模基准数据集上进行实验,并与多个当前先进方法进行比较,在绝大部分指标上都超越当前先进方法,验证了本文方法的有效性与鲁棒性。 展开更多
关键词 多模态情感分析 特征解耦 预训练BERT 对比学习 表示学习
在线阅读 下载PDF
基于增强句法信息与多特征图卷积融合的方面级情感分析
12
作者 田继帅 艾芳菊 《计算机科学与探索》 北大核心 2025年第3期738-748,共11页
方面级情感分析作为情感计算领域的重要任务,旨在识别文本中关于特定方面的情感倾向。为了提高在这一任务中的性能,提出了一种增强句法信息与多特征图卷积融合的网络模型(ESMFGCN),利用依赖树表示句子中单词之间的语法结构关系,由于单... 方面级情感分析作为情感计算领域的重要任务,旨在识别文本中关于特定方面的情感倾向。为了提高在这一任务中的性能,提出了一种增强句法信息与多特征图卷积融合的网络模型(ESMFGCN),利用依赖树表示句子中单词之间的语法结构关系,由于单纯地使用依赖树方法在建模时会引发不相关的噪声问题,引入了短语结构树,并将短语树转化为层级短语矩阵,并将由依赖树构造的邻接矩阵和层级短语矩阵合并作为图卷积网络的初始矩阵,用于增强句法信息。为了更精细地捕捉方面词与整个句子之间的关联,引入了注意力机制,对方面词上下文和整个句子建立更为精细的关联,并通过图卷积网络提取语义信息。设计融合层用于融合语义信息与句法信息,从而提高方面级情感分析的准确性和鲁棒性。在Restaurant、Laptop、Twitter数据集上分别设计对比实验、消融实验和敏感性分析实验,实验结果表明,相较于其他研究方法,该方法取得了显著的性能提升,证明了模型的有效性和优越性。 展开更多
关键词 方面级情感分析 句法特征 注意力机制 图卷积网络
在线阅读 下载PDF
基于语义特征提取的隐式情感分析方法
13
作者 丛眸 彭涛 朱蓓蓓 《吉林大学学报(理学版)》 北大核心 2025年第1期107-113,共7页
针对目前隐式情感语句中情感词不明显或较少、表达方式委婉等问题,提出一种基于语义特征提取的隐式情感分析方法.该方法通过引入与隐式情感语句相关的事实信息作为辅助特征,并利用RoBERTa预训练模型对文本及其辅助特征进行深度语义交互... 针对目前隐式情感语句中情感词不明显或较少、表达方式委婉等问题,提出一种基于语义特征提取的隐式情感分析方法.该方法通过引入与隐式情感语句相关的事实信息作为辅助特征,并利用RoBERTa预训练模型对文本及其辅助特征进行深度语义交互,以获取全局特征;同时,采用双向门控循环单元(BiGRU)捕捉局部特征,最后结合注意力池化技术计算情感权重,从而更准确地识别和理解隐含的情感信息.在数据集Snopes和PolitiFact上进行仿真实验,实验结果表明,该方法在隐式情感分析方面性能优异,不仅在多个评价指标上超越了现有方法,且整体性能得到显著提升,为更广泛的情感分析应用场景提供了有效的解决方案,特别是在处理复杂和间接表达的情感内容时,具有重要的应用价值和意义. 展开更多
关键词 语义特征 隐式情感分析 双向门控循环单元 注意力池化
在线阅读 下载PDF
基于多头自注意力机制与MLP-Interactor的多模态情感分析
14
作者 林宜山 左景 卢树华 《浙江大学学报(工学版)》 北大核心 2025年第8期1653-1661,1679,共10页
针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质... 针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质量.通过MLP-Interactor机制实现多模态特征之间的充分交互,学习不同模态之间的一致性信息.利用提出方法,在CMU-MOSI和CMU-MOSEI 2个公开数据集上进行大量的实验验证与测试.结果表明,提出方法超越了当前诸多的先进方法,可以有效地提升多模态情感分析的准确性. 展开更多
关键词 多模态情感分析 MLP-Interactor 多头自注意力机制 特征交互
在线阅读 下载PDF
多尺度语义感知和注意力融合的多模态方面级情感分析模型 被引量:1
15
作者 杨丽莎 马常霞 +4 位作者 仲兆满 周子豪 周志耀 胡文彬 赵雪峰 《南京大学学报(自然科学版)》 北大核心 2025年第2期223-236,共14页
多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型... 多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型(Multiscale Semantic Perception and Attention Fusion Model,MSPAF).首先,充分挖掘多尺度的图像语义信息,进行跨模态语义关联建模,以促进文本图像在统一特征空间内的有效交互.提出一种动态门控交叉注意力机制,在方面引导下进行视觉特征提取.其次,结合图卷积神经网络深度共现词间的语义依赖关系,获取句法和语义增强的上下文表征.最后,在多模态特征融合阶段,通过多层注意力池化学习不同模态特征的相关性,并降低融合特征维度.在公开的情感分析数据集上,对提出的模型进行评估,实验结果表明,与一系列基线模型相比,本模型具有更佳的情感分类效果. 展开更多
关键词 多模态方面级情感分析 多尺度图像语义提取 统一特征空间 语义关联建模 文本图卷积 注意力池化
在线阅读 下载PDF
基于双向交叉注意力的多尺度特征融合情感分类
16
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 北大核心 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 多尺度特征融合 数据增强 混合损失函数 双向交叉注意力
在线阅读 下载PDF
基于多任务联合学习与自适应融合的多模态情感分析模型
17
作者 樊继冬 仲兆满 +3 位作者 韩天乐 李梦晗 崔心如 徐瑾 《计算机应用研究》 北大核心 2025年第9期2583-2589,共7页
针对多模态情感分析中模态异质性特征关注不足导致的特征冗余和噪声干扰问题,提出了一种基于多任务联合学习与自适应融合的多模态情感分析模型(MTL-SAF)。该模型创新性地构建了多任务联合情感分析模块,通过同时处理多模态和单模态任务... 针对多模态情感分析中模态异质性特征关注不足导致的特征冗余和噪声干扰问题,提出了一种基于多任务联合学习与自适应融合的多模态情感分析模型(MTL-SAF)。该模型创新性地构建了多任务联合情感分析模块,通过同时处理多模态和单模态任务来全面捕捉模态间异质性特征,并引入动态权重分配的自适应融合机制以抑制冗余噪声。模型采用多尺度特征提取策略,有效融合低级与高级特征以增强情感信息表达能力。在SIMS、MOSI和MOSEI数据集上的实验结果表明,MTL-SAF在情感分类准确率和F 1值等指标上均显著优于现有基线模型,验证了其在处理模态异质性和增强特征表达方面的优越性。 展开更多
关键词 多模态情感分析 多任务学习 异质特征 自适应融合 多尺度特征 多模态融合
在线阅读 下载PDF
基于句法依存增强和方面语义聚焦的方面级情感分析
18
作者 王一力 陈浩文 袁程胜 《计算机应用研究》 北大核心 2025年第9期2669-2675,共7页
现有的方面级情感分析研究大多采用基于依存树的图神经网络来构建模型,但忽略了原始依存树包含的大量无关依赖关系且缺乏针对特定方面语义的特征提取。为此,提出了一种基于句法依存增强和方面语义聚焦的双通道图卷积网络模型(SADGCN)来... 现有的方面级情感分析研究大多采用基于依存树的图神经网络来构建模型,但忽略了原始依存树包含的大量无关依赖关系且缺乏针对特定方面语义的特征提取。为此,提出了一种基于句法依存增强和方面语义聚焦的双通道图卷积网络模型(SADGCN)来提升情感分析的预测精度。该模型主要由句法增强模块与语义增强模块组成。对于句法增强模块,提出了一种高效的面向方面词的选择方法来重塑句法依存树,从而更加准确地捕获与目标方面高度相关的句法信息;对于语义增强模块,设计了一种方面聚焦注意力机制来与全局性自注意力机制相融合的策略,从而帮助模型学习特定方面的语义特征表示。最后将两个模块学习到的信息进行特征融合以预测情感极性。三个基准数据集上的实验结果表明,所提模型相比于对比模型取得了更优的效果。 展开更多
关键词 方面级情感分析 句法结构 语义特征 图卷积网络 注意力机制
在线阅读 下载PDF
基于语言特征增强的方面情感三元组抽取
19
作者 黄梓芃 曾碧卿 +1 位作者 陈鹏飞 周斯颖 《计算机工程》 北大核心 2025年第6期83-92,共10页
方面情感三元组抽取是方面级情感分析中的一个重要子任务,旨在从句子中抽取方面词、意见词和情感极性。近年来,句法依赖树结合图卷积网络(GCN)已经在三元组抽取任务中取得了良好的效果。然而,这些方法大多没有充分利用语言特征,也没有... 方面情感三元组抽取是方面级情感分析中的一个重要子任务,旨在从句子中抽取方面词、意见词和情感极性。近年来,句法依赖树结合图卷积网络(GCN)已经在三元组抽取任务中取得了良好的效果。然而,这些方法大多没有充分利用语言特征,也没有对语言特征进行增强,且大部分忽略了全局上下文核心信息。因此,提出一种基于语言特征增强的方面情感三元组抽取模型LFE。首先,引入关键词的词性特征以充分利用语义信息;接着,考虑句法依赖类型,计算词间的相对句法依赖距离,使词能够关注离它较近的词的句法特征;然后,采用双仿射注意力机制结合GCN来增强语义和句法特征,GCN及双仿射注意力机制能有效地利用句法依赖树的结构信息,并将其融入模型中;最后,对全局特征与语言特征进行融合,以确保全局上下文中的关键信息不被忽略,从而提高模型的鲁棒性。实验结果表明,LFE模型在Res14、Lap14、Res15、Res16等4个数据集上的F1值相对GCN-EGTS-BERT模型分别提高了3.52、5.32、1.97、2.63百分点,证明其具有可行性和有效性。 展开更多
关键词 方面情感三元组抽取 语言特征 关键词词性 相对句法依赖距离 图卷积网络
在线阅读 下载PDF
基于注意力机制的深层特征融合MOOC评论情感分析
20
作者 韦金矿 贾灿 +1 位作者 王鹏飞 艾孜尔古丽·玉素甫 《现代电子技术》 北大核心 2025年第14期63-70,共8页
在线教育因大众对多样化学习的渴求及技术进步而迅猛发展。分析中国大学MOOC网站上在线评论的情感倾向,对于课程的优化及平台的高质量发展具有重要意义。针对目前文本情感分析任务中存在的难以充分提取和融合文本特征信息、泛化性能不... 在线教育因大众对多样化学习的渴求及技术进步而迅猛发展。分析中国大学MOOC网站上在线评论的情感倾向,对于课程的优化及平台的高质量发展具有重要意义。针对目前文本情感分析任务中存在的难以充分提取和融合文本特征信息、泛化性能不足的问题,提出一种基于注意力机制的深层特征融合MOOC评论情感分析模型,即BERT-RAP。利用BERT提取出文本的丰富语义,通过BiLSTM进一步提取序列信息来更好地捕捉文本的特征表达,同时采用注意力机制捕捉序列中最相关的部分;之后对MOOC评论文本进行关键词提取,并将关键词词嵌入与注意力加权的BiLSTM输出通过亲和力矩阵进行特征交互,以便模型融合不同的特征来挖掘更深层的语义。由于数据可能存在较大离群值,采用百分比池化方法在一定程度上降低模型对离群值的敏感程度,从而提高模型的鲁棒性。最后通过情感分类器获得文本所属情感。实验结果表明,在MOOC评论数据集上,与文本情感分析基线模型相比,所提模型情感分类效果更佳。 展开更多
关键词 MOOC评论文本 情感分析 语义提取 特征融合 BERT模型 BiLSTM 自注意力机制 百分比池化方法
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部