期刊文献+
共找到26,602篇文章
< 1 2 250 >
每页显示 20 50 100
Engineering of copper sulfide-based nanomaterials for thermoelectric application
1
作者 Binqi He Kai Zhang Maiyong Zhu 《Green Energy & Environment》 2025年第4期619-688,共70页
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.... In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials. 展开更多
关键词 nanomaterials thermoelectric materials organic thermoelectric materialsthephonon diminishing energy resources sustainable development solid phase method greenhouse effectthermoelectric materials inorganic thermoelectric materialscopper sulfide compounds
在线阅读 下载PDF
基于量子点颜色转换层的Micro LED研究进展
2
作者 程旭东 陈祖康 +3 位作者 张针霖 朱艳青 徐刚 徐雪青 《新能源进展》 北大核心 2025年第1期107-120,共14页
微发光二极管(Micro LED)显示器是由微米级半导体发光像元阵列所组成的新型显示技术,是显示技术与LED技术复合集成的综合性技术。与液晶显示器和有机发光二极管显示器相比,Micro LED具有对比度高、功耗低、寿命长、响应时间短等优点。然... 微发光二极管(Micro LED)显示器是由微米级半导体发光像元阵列所组成的新型显示技术,是显示技术与LED技术复合集成的综合性技术。与液晶显示器和有机发光二极管显示器相比,Micro LED具有对比度高、功耗低、寿命长、响应时间短等优点。然而,由于LED芯片尺寸缩小至20μm以下,导致其吸收截面减小,使得传统的荧光粉颜色转换技术无法提供足够的亮度和产量,以满足高分辨率显示的需求。而量子点材料凭借其高量子产率、宽色域、颜色可调等优点,有望成为代替荧光粉的最佳材料。结合了量子点颜色转换技术的Micro LED光电器件具有高亮度、高效率和宽色域的优势,在显示领域具有广阔的应用前景。目前许多学界和产业界的研究者对全彩显示的Micro LED进行了深入研究,逐步实现了Micro LED的商业化。简要回顾了广泛应用于显示领域的量子点材料合成和优异性能的重要研究成果,然后以印刷技术、光刻技术、微流控技术、激光写入技术这四种效果突出的颜色转换层沉积工艺分类总结了基于量子点颜色转换技术Micro LED的全彩显示策略与性能优劣。最后,对基于量子点颜色转换层的Micro LED光电器件的应用前景进行了展望。 展开更多
关键词 量子点 micro LED 颜色转换层 全彩显示
在线阅读 下载PDF
Advanced electron microscopy characterization of nanomaterials for catalysis 被引量:4
3
作者 Dong Su 《Green Energy & Environment》 SCIE 2017年第2期70-83,共14页
Transmission electron microscopy(TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high sp... Transmission electron microscopy(TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researchers to image the process happened within 1 ms. This paper reviews the recent technical progresses of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized based on the perspective of application: for example, size, composition, phase, strain, and morphology. The electron beam induced effect and in situ TEM are also introduced. I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches. 展开更多
关键词 Advanced TEM nanomaterials CATALYSTS In situ
在线阅读 下载PDF
Carbon-based nanomaterials cause toxicity by oxidative stress to the liver and brain in Sprague-Dawley rats
4
作者 Ying-Ying Xu Chan Jin +2 位作者 Meng Wu Jian-Ye Zhou Hui-Ling Wei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期54-64,共11页
Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecologic... Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecological risks associated with carbon-based nanomaterials have received increasing attention.However,the biological safety of carbon based nanomaterials has not been systematically studied.In this study,we used different types of carbon materials,namely,graphene oxide(GO),single-walled carbon nanotubes(SWCNTs),and multiwalled carbon nanotubes(MWCNTs),as models to observe their distribution and oxidative damage in vivo.The results of Histopathological and ultrastructural examinations indicated that the liver and lungs were the main accumulation targets of these nanomaterials.SR-μ-XRF analysis revealed that SWCNTs and MWCNTs might be present in the brain.This shows that the three types of carbon-based nanomaterials could cross the gas-blood barrier and eventually reach the liver tissue.In addition,SWCNTs and MWCNTs could cross the blood-brain barrier and accumulate in the cerebral cortex.The increase in ROS and MDA levels and the decrease in GSH,SOD,and CAT levels indicated that the three types of nanomaterials might cause oxidative stress in the liver.This suggests that direct instillation of these carbon-based nanomaterials into rats could induce ROS generation.In addition,iron(Fe)contaminants in these nanomaterials were a definite source of free radicals.However,these nanomaterials did not cause obvious damage to the rat brain tissue.The deposition of selenoprotein in the rat brain was found to be related to oxidative stress and Fe deficiency.This information may support the development of secure and reasonable applications of the studied carbon-based nanomaterials. 展开更多
关键词 Carbon-based nanomaterials Oxidative stress Trace element distribution TEM SR-μ-XRF
在线阅读 下载PDF
Application of nanomaterials in antifouling:A review
5
作者 Nan Wang Ruiyong Zhang +4 位作者 Kunpeng Liu Yuxin Zhang Xin Shi Wolfgang Sand Baorong Hou 《Nano Materials Science》 CSCD 2024年第6期672-700,共29页
With the continuous development of the marine economy and the upgrading of marine infrastructure,the increasing marine engineering equipment is facing a serious problem of marine fouling.However,developing marine anti... With the continuous development of the marine economy and the upgrading of marine infrastructure,the increasing marine engineering equipment is facing a serious problem of marine fouling.However,developing marine antifouling materials and antifouling technologies is extremely difficult due to the complexity of the marine environment and the biodiversity of the fouling.Therefore,it is the key breakthrough to develop advanced materials for solving marine fouling problems.Nanomaterials with small dimensions and controlled microstructure have outstanding antifouling efficiency and great promise for various antifouling fields.Herein,the development of antifouling nanomaterials and technologies in recent years are reviewed for aspects of types of antifouling nanomaterials,technologies of antifouling,and potential application of antifouling.The antifouling nanomaterials are categorized as non-metal-based nanomaterials,metal-based nanomaterials,polymeric nanomaterials,composite nanomaterials,and others.Additionally,the potential applications of antifouling nanomaterials,including marine antifouling,water treatment,and medical antifouling are discussed.Finally,we proposed the perspectives of research and development trends of the antifouling nanomaterials.This overview may promote the development of new efficient antifouling nanomaterials and develop their potential commercial applications. 展开更多
关键词 nanomaterials ANTIFOULING ANTIBACTERIAL ANTICORROSION COATING Membranes
在线阅读 下载PDF
芯片尺寸与阵列偏移对图形衬底Micro-LED光强空间分布的影响
6
作者 张佳辰 李盼盼 +2 位作者 李金钗 黄凯 李鹏岗 《发光学报》 北大核心 2025年第2期366-372,共7页
微型发光二极管(Micro-light emitting diode,Micro-LED)以高亮度、高对比度、低能耗和快速响应等优异特性,广泛应用于户外显示、增强现实和虚拟现实等领域。然而,Micro-LED的微型化带来了光强分布控制的挑战。为提高其发光效率,常使用... 微型发光二极管(Micro-light emitting diode,Micro-LED)以高亮度、高对比度、低能耗和快速响应等优异特性,广泛应用于户外显示、增强现实和虚拟现实等领域。然而,Micro-LED的微型化带来了光强分布控制的挑战。为提高其发光效率,常使用图形蓝宝石衬底(Patterned sapphire substrate,PSS)技术,通过微米级图形单元优化光提取率。在大尺寸LED中,PSS对光强空间分布影响较小,但在微米级Micro-LED中影响显著。本文采用光线追迹方法,系统研究了发光波长为460 nm的不同尺寸PSS Micro-LED在不同阵列偏移下的光强空间分布,并量化了光强空间分布的非对称率,最后解释了该现象。结果表明,随着尺寸减小,PSS对光强空间分布影响增大。当尺寸为3μm×5μm时,在y轴和x轴的光强空间分布的非对称率达3.06%和4.22%,因而影响Micro-LED发光均匀性。本研究为Micro-LED在显示应用中的优化设计提供了理论支持。 展开更多
关键词 micro-LED 图形蓝宝石衬底(PSS) 非对称率
在线阅读 下载PDF
无需脱钙骨微血管Micro-CT成像初步研究
7
作者 付鹤玲 郑媛 +2 位作者 尹媛 鲍丹 侯道荣 《中国医药导报》 2025年第6期19-24,共6页
目的通过脱钙与否骨微血管微计算机断层扫描技术(Micro-CT)成像的对比研究,建立无需脱钙的骨微血管成像造影方法。方法配置Microfil、氧化铅和纳米级硫酸钡造影剂,通过左心室灌注SD大鼠和ICR小鼠各20只,每种造影剂灌注大、小鼠各5只;利... 目的通过脱钙与否骨微血管微计算机断层扫描技术(Micro-CT)成像的对比研究,建立无需脱钙的骨微血管成像造影方法。方法配置Microfil、氧化铅和纳米级硫酸钡造影剂,通过左心室灌注SD大鼠和ICR小鼠各20只,每种造影剂灌注大、小鼠各5只;利用场发射透射电镜检测氧化铅和纳米级硫酸钡的颗粒直径;采用Micro-CT检测并分析Microfil工作液、不同浓度的氧化铅和纳米级硫酸钡造影剂的CT值;通过甲苯胺蓝染色检测各种造影剂的骨微血管灌注效果;运用Micro-CT检测各种造影剂在大、小鼠股骨血管中的灌注效果,并对3种造影剂在骨血管体积百分比、血管数量和血管分离度进行定量比较。结果氧化铅和纳米级硫酸钡颗粒的直径均<100 nm;与骨的CT值比较,Microfil工作液的CT值小于骨的CT值(P<0.05);而氧化铅和纳米级硫酸钡工作液的CT值高于骨的CT值,且当浓度>0.2 g/mL时,氧化铅和纳米级硫酸钡工作液的CT值均高于骨的CT值(P<0.05或P<0.01);甲苯胺蓝染色结果显示,3种造影剂灌注均可注入小鼠和大鼠的骨微血管,且灌注效果良好;小鼠和大鼠股骨微血管的三维图像显示,3种造影剂均能出色地呈现股骨内微血管的形态;血管形态学参数结果显示,3种造影剂在血管体积比、血管数量和血管分离度比较,差异无统计学意义(P>0.05)。结论浓度为0.2 g/ml的纳米级硫酸钡及氧化铅造影剂适用于骨微血管造影实验,并且在该过程中无需脱钙处理。 展开更多
关键词 造影剂 骨微血管 微计算机断层扫描技术 大鼠 小鼠
在线阅读 下载PDF
A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health 被引量:21
8
作者 Thabitha P.Dasari Shareena Danielle McShan +1 位作者 Asok K.Dasmahapatra Paul B.Tchounwou 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期164-197,共34页
Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, d... Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing:(1) the history, synthesis,structural properties and recent developments of GBNs for biomedical applications;(2) GBNs uses as therapeutics,drug/gene delivery and antibacterial materials;(3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and(4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs. 展开更多
关键词 Graphene-based nanomaterials Biomedical Delivery Biosensors Tissue engineering BIOIMAGING Health and environment risks
在线阅读 下载PDF
High-Performance Li-ion Batteries and Super-capacitors Based on Prospective 1-D Nanomaterials 被引量:9
9
作者 Dandan Zhao Ying Wang Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2011年第1期62-71,共10页
One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacito... One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D nanomaterials(such as Li Mn2O4 nanowires, carbon nanofibers, Ni Mo O4 · n H2O nanorods, V2O5 nanoribbons,carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nanomaterials including carbon nanotube(CNT), some oxides, transition metal compounds and polymers, and their composites are emphatically introduced. The VGCF/Li Fe PO4/C triaxial nanowire cathodes for Li-ion battery present a positive cycling performance without any degradation in almost theoretical capacity(160 m Ah/g).The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity(4277 m Ah/g),that is about 11 times lager than that of the commercial graphite(372 m Ah/g). The SWCNT/Ni foam electrodes for supercapacitor display small equivalent series resistance(ESR, 52 m?) and impressive high power density(20 k W/kg). The advantages and challenges associated with the application of these materials for energy conversion and storage devices are highlighted. 展开更多
关键词 One-dimensional nanomaterials Li-ion battery SUPERCAPACITOR Electrochemical property
在线阅读 下载PDF
Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials:Strategies,Traps,Applications and Challenges 被引量:12
10
作者 Weiqi Qian Suwen Xu +4 位作者 Xiaoming Zhang Chuanbo Li Weiyou Yang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期214-251,共38页
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic per... Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis. 展开更多
关键词 2D nanomaterials PHOTOCATALYSIS ELECTROCATALYSIS Electrochemistry PHOTOELECTROCHEMISTRY
在线阅读 下载PDF
Gas Sensors Based on Chemi?Resistive Hybrid Functional Nanomaterials 被引量:9
11
作者 Yingying Jian Wenwen Hu +4 位作者 Zhenhuan Zhao Pengfei Cheng Hossam Haick Mingshui Yao Weiwei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期27-69,共43页
Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity,good selectivity,fast response/recovery,great stability/repeatability,room-working temperatu... Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity,good selectivity,fast response/recovery,great stability/repeatability,room-working temperature,low cost,and easy-to-fabricate,for versatile applications.This progress report reviews the advantages and advances of these sensing structures compared with the single constituent,according to five main sensing forms:manipulating/constructing heterojunctions,catalytic reaction,charge transfer,charge carrier transport,molecular binding/sieving,and their combinations.Promises and challenges of the advances of each form are presented and discussed.Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed. 展开更多
关键词 GAS SENSOR Hybrid Chemi-resistor FUNCTIONAL nanomaterials
在线阅读 下载PDF
Nanomaterials for Cardiac Tissue Engineering Application 被引量:2
12
作者 Yachen Zhang Yong Tang +1 位作者 Ying Wang Liying Zhang 《Nano-Micro Letters》 SCIE EI CAS 2011年第4期270-277,共8页
In recent years, the emerging cardiac tissue engineering provides a new therapeutic method for heart diseases. And in the tissue engineering, the scaffold material which can mimic the structure of the extracellular ma... In recent years, the emerging cardiac tissue engineering provides a new therapeutic method for heart diseases. And in the tissue engineering, the scaffold material which can mimic the structure of the extracellular matrix properly is a key factor. The rapid expansion of nano-scaffolds during the past ten years has led to new perspectives and advances in biomedical research as well as in clinical practice. Here we search articles published in recent years extensively on cardiac tissue engineering scaffold materials and nanotechnology. And we review the traditional scaffold materials and the advances of the nano-scaffolds in cardiac tissue engineering. A thorough understanding of the nano-scaffolds would enable us to better exploit technologies to research the ideal scaffold material, and promote the cardiac tissue engineering using in the clinical practice as soon as possible. 展开更多
关键词 Cardiac tissue engineering Nano-scaffolds nanomaterials
在线阅读 下载PDF
光子晶体Micro LED微显示阵列加工及光学特性分析 被引量:1
13
作者 孟媛 肖秧 +4 位作者 冯晓雨 何龙振 张鹏喆 宁平凡 刘宏伟 《半导体技术》 CAS 北大核心 2024年第8期719-725,共7页
Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示... Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示阵列芯片和Si基驱动电路的设计方法及集成工艺。通过时域有限差分(FDTD)方法对Micro LED微显示阵列光学特性进行了建模分析,设计了一种提高Micro LED微显示阵列出光效率的光提取结构。结合仿真结果,开发了一种在Micro LED蓝宝石衬底表面制备光子晶体结构的聚焦离子束(FIB)微纳加工工艺,并进行了器件加工。测试结果表明,蓝宝石衬底上加工的光子晶体结构可以提高Micro LED器件的表面出光效率,光功率平均值提升了16.36%,对Micro LED微显示阵列加工及微显示像素光提取问题具有借鉴意义。 展开更多
关键词 micro LED 微显示阵列 光子晶体结构 聚焦离子束(FIB) 出光效率
在线阅读 下载PDF
Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis 被引量:2
14
作者 Shao Su Shimou Chen Chunhai Fan 《Green Energy & Environment》 SCIE 2018年第2期97-106,共10页
With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dime... With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dimensional(2D) nanomaterials hold great promise due to their unique chemical and physical properties, which have been extensively employed to monitor the environmental pollutants combined with different detection techniques. In this review, we summarize recent advances in 2D nanomaterials-based electrochemical sensors for detecting heavy metal ions, organic compounds, pesticides, antibiotics and bacteria. We also discuss perspectives and challenges of 2D nanomaterials in environmental monitoring. 展开更多
关键词 Two dimensional nanomaterials Electrochemical sensor Environmental monitoring
在线阅读 下载PDF
Connecting Calcium-Based Nanomaterials and Cancer:From Diagnosis to Therapy 被引量:7
15
作者 Shuang Bai Yulu Lan +3 位作者 Shiying Fu Hongwei Cheng Zhixiang Lu Gang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期95-131,共37页
As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes ... As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes its“Janus nature”strictly regulated by its concentration.Abnormal regulation of calcium signals may cause some diseases;however,artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role.“Calcium overload,”for example,is characterized by excessive enrichment of intracellular Ca^(2+),which irreversibly switches calcium signaling from“positive regulation”to“reverse destruction,”leading to cell death.However,this undesirable death could be defined as“calcicoptosis”to offer a novel approach for cancer treatment.Indeed,Ca^(2+)is involved in various cancer diagnostic and therapeutic events,including calcium overload-induced calcium homeostasis disorder,calcium channels dysregulation,mitochondrial dysfunction,calcium-associated immunoregulation,cell/vascular/tumor calcification,and calcification-mediated CT imaging.In paral-lel,the development of multifunctional calcium-based nanomaterials(e.g.,calcium phosphate,calcium carbonate,calcium peroxide,and hydroxyapatite)is becoming abundantly available.This review will highlight the latest insights of the calcium-based nanomaterials,explain their application,and provide novel perspective.Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics. 展开更多
关键词 Calcium-based nanomaterials Cancer therapy Calcium signaling Tumor calcification THERANOSTICS
在线阅读 下载PDF
Structure, Performance, and Application of BiFeO_(3) Nanomaterials 被引量:5
16
作者 Nan Wang Xudong Luo +4 位作者 Lu Han Zhiqiang Zhang Renyun Zhang H-kan Olin Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期214-236,共23页
Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,... Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,lowpower consumption,environmentally friendly devices.Bismuth ferrite(BiFeO3,BFO)exhibits both(anti)ferromagnetic and ferroelectric properties at room temperature.Thus,it has played an increasingly important role in multiferroic system.In this review,we systematically discussed the developments of BFO nanomaterials including morphology,structures,properties,and potential applications in multiferroic devices with novel functions.Even the opportunities and challenges were all analyzed and summarized.We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future. 展开更多
关键词 BISMUTH ferrite MULTIFERROIC nanomaterials Multifunctional device FERROELECTRICITY MAGNETOELECTRIC coupling
在线阅读 下载PDF
Versatile Functionalization of Carbon Nanomaterials by Ferrate(Ⅵ) 被引量:1
17
作者 Ying Zhou Zhao‑Yang Zhang +2 位作者 Xianhui Huang Jiantong Li Tao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期12-21,共10页
As a high-valent iron compound with Fe in the highest accessible oxidation state,ferrate(VI)brings unique opportunities for a number of areas where chemical oxidation is essential.Recently,it is emerging as a novel ox... As a high-valent iron compound with Fe in the highest accessible oxidation state,ferrate(VI)brings unique opportunities for a number of areas where chemical oxidation is essential.Recently,it is emerging as a novel oxidizing agent for materials chemistry,especially for the oxidation of carbon materials.However,the reported reactivity in liquid phase(H2SO4 medium)is confusing,which ranges from aggressive to moderate,and even incompetent.Meanwhile,the solid-state reactivity underlying the“dry”chemistry of ferrate(VI)remains poorly understood.Herein,we scrutinize the reactivity of K2FeO4 using fullerene C60 and various nanocarbons as substrates.The results unravel a modest reactivity in liquid phase that only oxidizes the active defects on carbon surface and a powerful oxidizing ability in solid state that can open the inert C=C bonds in carbon lattice.We also discuss respective benefit and limitation of the wet and dry approaches.Our work provides a rational understanding on the oxidizing ability of ferrate(VI)and can guide its application in functionalization/transformation of carbons and also other kinds of materials. 展开更多
关键词 Ferrate(VI) REACTIVITY Carbon nanomaterials OXIDATION
在线阅读 下载PDF
Circularly Polarized Light-Enabled Chiral Nanomaterials:From Fabrication to Application 被引量:2
18
作者 Changlong Hao Gaoyang Wang +4 位作者 Chen Chen Jun Xu Chuanlai Xu Hua Kuang Liguang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期171-189,共19页
For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosens... For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing,asymmetric catalysis,optical devices,and negative index materials.Circularly polarized light(CPL)is the most attractive source for chirality owing to its high availability,and now it has been used as a chiral source for the preparation of chiral matter.In this review,the recent progress in the field of CPL-enabled chiral nanomaterials is summarized.Firstly,the recent advancements in the fabrication of chiral materials using circularly polarized light are described,focusing on the unique strategies.Secondly,an overview of the potential applications of chiral nanomaterials driven by CPL is provided,with a particular emphasis on biosensing,catalysis,and phototherapy.Finally,a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given. 展开更多
关键词 Circularly polarized light CHIRAL nanomaterials FABRICATION APPLICATION
在线阅读 下载PDF
Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction 被引量:4
19
作者 Jae Hyeon Nam Myeong Je Jang +4 位作者 Hye Yeon Jang Woojin Park Xiaolei Wang Sung Mook Choi Byungjin Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期107-111,I0004,共6页
The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochem... The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochemical catalysts for hydrogen evolution reaction(HER) applications. We, herein, propose a simple route toward the cost-effective physical vapor deposition process of 2D WSe2 layered nanofilms as HER electrochemical catalysts using RF magnetron sputtering at room temperature(<27℃). By controlling the variable sputtering parameters, such as RF power and deposition time, the loading amount and electrochemical surface area(ECSA) of WSe2 films deposited on carbon paper can be carefully determined. The surface of the sputtered WSe2 films are partially oxidized, which may cause spherical-shaped particles. Regardless of the loading amount of WSe2, Tafel slopes of WSe2 electrodes in the HER test are narrowly distributed to be ~120–138 mV dec-1, which indicates the excellent reproducibility of intrinsic catalytic activity. By considering the trade-off between the loading amount and ECSA, the best HER performance is clearly observed in the 200 W-15 min sample with an overpotential of 220 mV at a current density of 10 mA cm-2. Such a simple sputtering method at low temperature can be easily expanded to other 2D TMD electrochemical catalysts, promising potentially practical electrocatalysts. 展开更多
关键词 Two dimensional nanomaterials Sputtering WSe2 nanofilm ELECTROCATALYST Hydrogen evolution reaction
在线阅读 下载PDF
Recent advances in nanomaterials for high-performance Li–S batteries 被引量:3
20
作者 James E.Knoop Seongki Ahn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期86-106,I0004,共22页
This article reviews nanotechnology as a practical solution for improving lithium-sulfur batteries. Lithiumsulfur batteries have been widely examined because sulfur has many advantageous properties such as a high crus... This article reviews nanotechnology as a practical solution for improving lithium-sulfur batteries. Lithiumsulfur batteries have been widely examined because sulfur has many advantageous properties such as a high crustal abundance, low environmental impact, low cost, high gravimetric(2600 W h kg-1) and volumetric(2800 W h L-1) energy densities, assuming complete conversion of sulfur to lithium sulfide(Li2S)upon lithiation. However, lithium-sulfur batteries have not yet reach commercialization due to demerits involving the formation of soluble lithium polysulfides(Li2Sn, n=3–8), low electrical conductivity, and low loading density of sulfur. These issues arise mainly due to the polysulfide shuttle phenomenon and the inherent insulating nature of sulfur. To overcome these issues, strategies have been pursued using nanotechnology applied to porous carbon nanocomposites, hollow one-dimensional carbon nanomaterials, graphene nanocomposites, and three-dimensional carbon nanostructured matrices. This paper aims to review various solutions pertaining to the role of nanotechnology in synthesizing nanoscale and nanostructured materials for advanced and high-performance lithium–sulfur batteries. Furthermore, we highlight perspective research directions for commercialization of lithium–sulfur batteries as a major power source for electric vehicles and large-scale electric energy storage. 展开更多
关键词 NANOTECHNOLOGY Lithium–sulfur batteries Carbon nanomaterials Nanocomposite sulfur 3D nanostructured materials
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部