In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate ...The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate peptides(MWHPs)were evaluated in this study. MWHPs with a degree of hydrolysis of 32.23% were ultrafiltered and divided into three fractions,namely, high(> 10 k Da), medium(3–10 kDa), and low molecular weight(< 3 kDa), and then fed to mice continuously at doses of 200, 400 or 800 mg/(kg·d). The antifatigue, antioxidative, and immunoregulatory effects of the peptides were tested on the second and fourth weeks of MWHP administration. Results showed that low-molecular-weight MWHPs exerted significant antifatigue(prolonging swimming time, elevating liver glycogen contents, and reducing lactic acid contents), antioxidative(enhancing superoxide dismutase(SOD), GSH-Px, and catalase(CAT) activities and reducing malondialdehyde(MDA) content), and immunoregulatory(raising the immune-organ index and promoting T-lymphocyte proliferation and s Ig A secretion in the intestinal tract) effects. This research indicates that MWHPs have potential applications in health care and may be developed as a base for new functional foods.展开更多
Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-infl...Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-inflammatory properties,which are highly imperative.Further in-vivo studies reported that betalains protect various body organs,leading to health enhancement.Body organs,including the heart,liver,kidney,lung,etc.,are important for a healthy life.However,these organs can be affected or damaged by various stress factors,toxicants,and harmful substances.Recent studies have claimed that betalains could protect all vital organs of the body through antioxidant and anti-inflammatory mechanisms.This review article described the in-vivo antioxidant and anti-inflammatory activities of betalains in various cell-line or animal models.A comprehensive discussion has been provided on the mechanism of action of betalains in protecting various body organs,including cardio-protective effect,hepato-protective ability,renal protection capacity,repro-protective ability,neuro-protective effect,lung protection,and gut protection ability.Finally,future research directions and conclusions have been outlined.展开更多
Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless...Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless,its specific role and mechanisms regarding AMI remain unclear.Methods We assessed cardiac function through echocardiography;tissue damage was evaluated using Hematoxylin and Eosin(HE)and Masson trichrome staining.AKR1C3 expression levels were measured through Reverse transcription-quantitative polymerase chain reaction and western blot.Assessed cell viability using Cell Counting Kit-8 and lactate dehydrogenase(LDH)assays.The extent of ferroptosis was determined by measuring the levels of Fe2+,boron-dipyrromethane(BODIPY)and malondialdehyde(MDA),the glutathione/glutathione disulfide(GSH/GSSG)ratio,and the expression of Glutathione Peroxidase 4(GPX4)and Solute carrier 7A11(SLC7A11).Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2-Antioxidant response element(Keap1-Nrf2-ARE)pathway activation was analyzed through western blotting.Nrf2 was inhibited with ML385and activated with(R)-Sulforaphane to investigate the Keap1-Nrf2-ARE pathway.Results The rats in the AMI group displayed reduced heart function,more tissue damage,and lower AKR1C3 expression compared to the Sham group.Similarly,hypoxia-treated H9C2 cells showed reduced viability,and decreased AKR1C3 expression.Overexpressing AKR1C3 in H9C2 cells enhanced viability.Knocking down AKR1C3 exhibited the opposite effect.Of the inhibitors tested,Ferrostatin-1 most effectively restored cell viability in hypoxia-treated H9C2 cells.Moreover,H9C2 cells subjected to hypoxia suggested Keap1-Nrf2-ARE pathway inhibition.Overexpressing AKR1C3 reduced ferroptosis and activated the Keap1-Nrf2-ARE pathway in hypoxia-treated cells,knocking down AKR1C3 exhibited the opposite effect.Further experiments using ML385 in hypoxia-treated H9C2 cells with overexpressed AKR1C3 showed decreased viability and increased ferroptosis compared to the control.Using(R)-Sulforaphane in hypoxia-treated H9C2 cells with knocked-down AKR1C3 exhibited the opposite effect.Conclusion This study's findings indicate that AKR1C3 plays a role in regulating ferroptosis in myocardial cells,with the Keap1-Nrf2-ARE pathway likely being a key mechanism behind it.展开更多
Phlorizin(PHL)is a natural compound with strong antioxidant properties mainly found in apples.In this paper,the interaction mechanism of PHL with pepsin and trypsin was comparatively evaluated by computer simulation,f...Phlorizin(PHL)is a natural compound with strong antioxidant properties mainly found in apples.In this paper,the interaction mechanism of PHL with pepsin and trypsin was comparatively evaluated by computer simulation,fluorescence spectra,circular dichroism(CD),and Fourier transform infrared(FT-IR)spectra at a molecular level.Fluorescence spectra showed that PHL quenches the pepsin/trypsin by static quenching.Thermodynamic parameters indicated that PHL binds to pepsin mainly through hydrogen bonds and van der Waals forces,and that of trypsin was electrostatic forces.The ground state complexes PHL and protease have a moderate affinity of 105 L/mol PHL binds more strongly to trypsin than to pepsin.CD and FT-IR spectra results showed that pepsin/trypsin decreased theβ-sheet content and slightly changed its secondary structure upon PHL.These experimental results are mutually verified with the predicted computer-aid simulation results.Upon PHL and trypsin binding,the antioxidant capacity of PHL was elevated.Nevertheless,the antioxidant capacity of PHL was decreased after binding to pepsin.This work elucidates the binding of PHL binding mechanisms to pepsin/trypsin and provides useful information for the digestion of PHL to improve the application of PHL in food processing.展开更多
Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity w...Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food.展开更多
Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reacti...Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reaction is considered as a promising method to enhance the antioxidant activity of peptides.Hence,this research aims at investigating the Maillard glycosylation activity and antioxidant activity of bone collagen hydrolysates from different sources.In this study,3 glycosylated bone collagen hydrolysates were prepared and characterized,and cytotoxicity and antioxidant activity were analyzed and evaluated.The free amino groups loss,browning intensity,and fluorescence intensity of G-Cbcp(glycosylated chicken bone collagen hydrolysates(peptides))were the heaviest,followed by G-Pbcp(glycosylated porcine bone collagen hydrolysates(peptides))and G-Bbcp(glycosylated bovine bone collagen hydrolysates(peptides)).The results of amino acid analysis showed that amino acid composition of different bone collagen hydrolysates was significantly different and the amino acid decreased to different degrees after Maillard glycosylated reaction,which may lead to differences in Maillard glycosylated reaction activity.Furthermore,the 3 glycosylated hydrolysates showed no significant cytotoxicity.The results showed that glycosylation process significantly increased the antioxidant activity of bone collagen hydrolysates,and G-Cbcp showed the strongest antioxidant activity,followed by G-Pbcp and G-Bbcp.Therefore,compared with the bone collagen hydrolysates,3 glycosylated hydrolysates showed significant characteristic and structural changes,and higher antioxidant activity.展开更多
This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that a...This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.展开更多
Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not bee...Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.展开更多
Nuclear factor erythroid-derived 2-like 2(Nrf2)is the master regulator of antioxidant defenses.High-intensity interval training(HIIT)has been proposed as a time-efficient training program and has become a substantial ...Nuclear factor erythroid-derived 2-like 2(Nrf2)is the master regulator of antioxidant defenses.High-intensity interval training(HIIT)has been proposed as a time-efficient training program and has become a substantial component of modern training program In the present study,we evaluated the effects of sulforaphane(SFN),a dietary isothiocyanate derived from cruciferous vegetables and a potent Nrf2 activator,on Nrf2-mediated antioxidant defense responses of skeletal muscle induced by exhaustive exercise in HIIT mice.Male C57 BL/6 J mice were randomly allocated into control group,HIIT group,and HIIT pretreated with SFN(HIIT+SFN)group.On the third day after completion of a 6-weeks HIIT protocol,an exhaustive treadmill test was conducted in all mice.Mice were intraperitoneally injected with SFN(HIIT+SFN group)or PBS(HIIT and control mice)4 times in 3 days prior to the exhaustive treadmill test.The results indicated that the 6-weeks HIIT protocol did not increase the antioxidative capacity of skeletal muscle during exhaustive exercise.Importantly,SFN treatment improved anti oxidative capacity of skeletal muscle in response to the acute exhaustive exercise by increasing mRNA and nucleoprotein expression of Nrf2 and these genes involved in antioxidant generation and decreasing blood creatine kinase(CK)and 4-hydroxy-2-nonenal(4-HNE)-modified protein levels in the HIIT mice.展开更多
The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wound...The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.展开更多
The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items...The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items is reported using high performance liquid chromatography (HPLC). A Cls column is used as the stationary phase, acetonltrile and water:Acetic acid (1%) is used as the mobile phase of gradient elution and the UV detec- tor is set at 280 nm. Under the above conditions, four antioxidents is completely separated within 8 rain. The limit of detection, linear range, and reproducibility of HPLC are evaluated. Isolation parameters of SPAs from different types of food items (cooking oil, margarine and butter, and cheese) are optimized. SPAs are extracted from food items through extraction with methanol/acetonitrile (1 : 1, in volume), vortex, ultrasonic treatment and precipitation in a freezer (2 h). For cooking oil margarine, butter and cheese at 50 and 200 rag/L, recoveries of SPAs are 93.3%0--108.3% (PG), 85.3~^--108.3~~ (TBHQ), 96.7~^--101.2~/6 (BHA), and 73.9^-- 94.6% (BHT). The method is applied to the determination of SPAs in 38 food items (16 cooking oils, 8 mar- garine, 6 butter and 6 cheese samples). The levels of SPAs in positive samples are all below the legal limits of China.展开更多
This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclim...This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage.展开更多
Physicochemical characteristics and in vitro antioxidant activities of four pyroligneous acids carbonized from the wastes of wood species including Mangosteen (Garcinia mangostana Linn.), Durian (Durio zibethinus L.),...Physicochemical characteristics and in vitro antioxidant activities of four pyroligneous acids carbonized from the wastes of wood species including Mangosteen (Garcinia mangostana Linn.), Durian (Durio zibethinus L.), Rambutan (Nephelium lappaceum L.), and Langsat (Lansium domesticum Serr.) were assessed. Appearing as transparent liquors with pH 3.9–4.2, the pyroligneous acid samples under test possessed acetic acid (23.22–25.46%) as the dominant component. The total soluble tar, total acid, and water content were 0.15 - 0.28 wt%, 99–192 mg KOH/g and 84.5–93.5 wt%, respectively. Phenolic compounds namely: 2,6-dimethoxyphenol (6.88–9.69%),phenol (2.97–5.88%), 4-methylsyringol (3.10–3.56%), guaiacol (2.36–3.55%), and 2-methoxy-4-methylphenol (1.08–1.28%) were found. All had in vitro antioxidant activities especially mangosteen pyroligneous acid, which showed activity roughly similar to BHT (P>0.05) against anti-lipid peroxidation. Nitric oxide scavenging capacities of all pyroligneous acids were significantly higher than BHT (P<0.05). Our results suggest that pyroligneous acids from the four types of branch waste could be used as sources of beneficial natural antioxidants, possibly as food or feed additives to protect against lipid peroxidation, and potentially also in veterinary medicine in anti-inflammatory products.展开更多
The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphe...The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphenyl-2-picrylhydrazyl (DPPH), the inhibition activity for peroxidation of linoleic acid, and the reduction power. The methanol-extracts of moso bamboo culms and madake bamboo leaves presented stronger antioxidant activity compared with DPPH scavenging activity. Methanol-extract of moso bamboo culms was further fractionated by different solvents and n-butanol soluble fraction exhibited the most significant activity in the DPPH scavenging assay. The fractionation of n-butanol soluble extract was isolated by silica gel column with gradient mixture solvent of chloroform and methanol. The isolated fractions were directed by the antioxidant activity measured by scavenging the stable DPPH free radical. It was observed that most of the eluted fractions showed the antioxidative activity. Fractions acquired from elution with the mixture solvent of chloroform and methanol (10:1–5:1) showed stronger antioxidant activity than the other fractions.展开更多
The aqueous extract of Phellodendron amurense Rupr. (Amur Cork Tree) provides a rich source of antioxidants and chemical compounds, and can be used for food and wood preservative materials. In this study, we charact...The aqueous extract of Phellodendron amurense Rupr. (Amur Cork Tree) provides a rich source of antioxidants and chemical compounds, and can be used for food and wood preservative materials. In this study, we characterized the chemical composition of this extract by GC and GC/MS. The antioxidant capacity was evaluated using a variety of antioxidant assays (superoxide radical, hydroxyl radical, nitric oxide radical, and DPPH radical scavenging activity). Additionally, total polyphenolic content was determined. Phenolic acids and acetone derivatives were major compounds of the extract capable of scavenging the DPPH free radical and reducing ferric ions. DPPH and ferric ion reduction results were strongly correlated with total phenolic content of the extract which also exhibited strong nitric oxide, hydroxyl radical scavenging and superoxide anion radical scavenging activities.展开更多
Total phenols,flavonoids,procyanidins,and total antioxidant capacity,measured with ferric reducing antioxidant power,radical scavenging capacity,and oxygen radical absorption capacity assays were first evaluated in th...Total phenols,flavonoids,procyanidins,and total antioxidant capacity,measured with ferric reducing antioxidant power,radical scavenging capacity,and oxygen radical absorption capacity assays were first evaluated in the extracts of the shells,skins and kernels of 10 varieties of Pinus koraiensis.Results indicate that these varieties had strong radical scavenging capacities,ferric reducing antioxidant power and oxygen radical absorption capacities.Phenolic,flavonoid and procyanidin values ranged from 138.6(#3 kernel)to 518.6(#10 shell)mg GAE/g,from 23.3(#2 kernel)to 70.8(#5 skin)mg RE/g,from 2.5(#2 kernel)to 142.1(#7 skin)mg CE/g,respectively.Radical scavenging capacity and ferric reducing antioxidant power values were positively correlated to the polyphenol contents which play a major role in antioxidant properties.The varieties may be divided into two groups by cluster analysis and the variables being measured.These results will be useful for breeding varieties and guiding their production.展开更多
Benzoxazinone 2 was prepared and reacted with formamide,acetamide,some primary aromatic amines and heterocyclic amines giving the corresponding quinazolone derivatives 3-15 respectively.The reaction of benzoxazinone 2...Benzoxazinone 2 was prepared and reacted with formamide,acetamide,some primary aromatic amines and heterocyclic amines giving the corresponding quinazolone derivatives 3-15 respectively.The reaction of benzoxazinone 2 with hydrazine hydrate and phenyl hydrazine was also studied.Representative compounds of the synthesized products were evaluated as antioxidants and corrosion inhibitors for gasoline engine lubricating oil.The highest antioxidant activities were obtained with compounds 10-15.The optimum concentration recommended for these new additives was found to be 0.lg for 1L ofoil for compounds 13-15.In addition,some of the highly effective antioxidant additives,namely 10-15,were thermally analyzed by using thermogravimetric analysis (TGA) and differential thermal gravimetric analysis (DTGA) techniques and the results indicated that compounds are thermally stable and could be used under thermal conditions.Moreover,a comparison of the oxidation stability between the tested oil containing the prepared products and lubricating oil containing commercial additives was also studied.展开更多
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金Supported by National High Technology Research and Development Program(No.2013AA102206-2)
文摘The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate peptides(MWHPs)were evaluated in this study. MWHPs with a degree of hydrolysis of 32.23% were ultrafiltered and divided into three fractions,namely, high(> 10 k Da), medium(3–10 kDa), and low molecular weight(< 3 kDa), and then fed to mice continuously at doses of 200, 400 or 800 mg/(kg·d). The antifatigue, antioxidative, and immunoregulatory effects of the peptides were tested on the second and fourth weeks of MWHP administration. Results showed that low-molecular-weight MWHPs exerted significant antifatigue(prolonging swimming time, elevating liver glycogen contents, and reducing lactic acid contents), antioxidative(enhancing superoxide dismutase(SOD), GSH-Px, and catalase(CAT) activities and reducing malondialdehyde(MDA) content), and immunoregulatory(raising the immune-organ index and promoting T-lymphocyte proliferation and s Ig A secretion in the intestinal tract) effects. This research indicates that MWHPs have potential applications in health care and may be developed as a base for new functional foods.
文摘Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-inflammatory properties,which are highly imperative.Further in-vivo studies reported that betalains protect various body organs,leading to health enhancement.Body organs,including the heart,liver,kidney,lung,etc.,are important for a healthy life.However,these organs can be affected or damaged by various stress factors,toxicants,and harmful substances.Recent studies have claimed that betalains could protect all vital organs of the body through antioxidant and anti-inflammatory mechanisms.This review article described the in-vivo antioxidant and anti-inflammatory activities of betalains in various cell-line or animal models.A comprehensive discussion has been provided on the mechanism of action of betalains in protecting various body organs,including cardio-protective effect,hepato-protective ability,renal protection capacity,repro-protective ability,neuro-protective effect,lung protection,and gut protection ability.Finally,future research directions and conclusions have been outlined.
基金supported by the Traditional Chinese Medicine Bureau of Guangdong Province,Guangzhou(grant No.20231321)the Clinical research initiation program project from Shunde Hospital,Southern Medical University,Foshan(grant No.CRSP2022004)。
文摘Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless,its specific role and mechanisms regarding AMI remain unclear.Methods We assessed cardiac function through echocardiography;tissue damage was evaluated using Hematoxylin and Eosin(HE)and Masson trichrome staining.AKR1C3 expression levels were measured through Reverse transcription-quantitative polymerase chain reaction and western blot.Assessed cell viability using Cell Counting Kit-8 and lactate dehydrogenase(LDH)assays.The extent of ferroptosis was determined by measuring the levels of Fe2+,boron-dipyrromethane(BODIPY)and malondialdehyde(MDA),the glutathione/glutathione disulfide(GSH/GSSG)ratio,and the expression of Glutathione Peroxidase 4(GPX4)and Solute carrier 7A11(SLC7A11).Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2-Antioxidant response element(Keap1-Nrf2-ARE)pathway activation was analyzed through western blotting.Nrf2 was inhibited with ML385and activated with(R)-Sulforaphane to investigate the Keap1-Nrf2-ARE pathway.Results The rats in the AMI group displayed reduced heart function,more tissue damage,and lower AKR1C3 expression compared to the Sham group.Similarly,hypoxia-treated H9C2 cells showed reduced viability,and decreased AKR1C3 expression.Overexpressing AKR1C3 in H9C2 cells enhanced viability.Knocking down AKR1C3 exhibited the opposite effect.Of the inhibitors tested,Ferrostatin-1 most effectively restored cell viability in hypoxia-treated H9C2 cells.Moreover,H9C2 cells subjected to hypoxia suggested Keap1-Nrf2-ARE pathway inhibition.Overexpressing AKR1C3 reduced ferroptosis and activated the Keap1-Nrf2-ARE pathway in hypoxia-treated cells,knocking down AKR1C3 exhibited the opposite effect.Further experiments using ML385 in hypoxia-treated H9C2 cells with overexpressed AKR1C3 showed decreased viability and increased ferroptosis compared to the control.Using(R)-Sulforaphane in hypoxia-treated H9C2 cells with knocked-down AKR1C3 exhibited the opposite effect.Conclusion This study's findings indicate that AKR1C3 plays a role in regulating ferroptosis in myocardial cells,with the Keap1-Nrf2-ARE pathway likely being a key mechanism behind it.
基金supported by the National Natural Science Foundation of China(21808020)the Applied Basic Research Program of Science&Technology Department of Sichuan Province(2018JY0151)。
文摘Phlorizin(PHL)is a natural compound with strong antioxidant properties mainly found in apples.In this paper,the interaction mechanism of PHL with pepsin and trypsin was comparatively evaluated by computer simulation,fluorescence spectra,circular dichroism(CD),and Fourier transform infrared(FT-IR)spectra at a molecular level.Fluorescence spectra showed that PHL quenches the pepsin/trypsin by static quenching.Thermodynamic parameters indicated that PHL binds to pepsin mainly through hydrogen bonds and van der Waals forces,and that of trypsin was electrostatic forces.The ground state complexes PHL and protease have a moderate affinity of 105 L/mol PHL binds more strongly to trypsin than to pepsin.CD and FT-IR spectra results showed that pepsin/trypsin decreased theβ-sheet content and slightly changed its secondary structure upon PHL.These experimental results are mutually verified with the predicted computer-aid simulation results.Upon PHL and trypsin binding,the antioxidant capacity of PHL was elevated.Nevertheless,the antioxidant capacity of PHL was decreased after binding to pepsin.This work elucidates the binding of PHL binding mechanisms to pepsin/trypsin and provides useful information for the digestion of PHL to improve the application of PHL in food processing.
基金supported by the Open Grant of Beijing Advanced Innovation Center for Food Nutrition and Human Health(20182024)National Natural Science Foundation of China(31370104)+4 种基金The Natural Science Foundation of Hunan Province,China(2021JJ30029)the Taishan Scholar Program of Shandong Province,China(tsqn201909168)“Double Hundred”Program for Foreign Experts of Shandong Province,China(WST2017004)Hunan Province Postgraduate Education Innovation Project and Professional Capacity Enhancement(CX20200297)Project the Fundamental Research Funds for the Central Universities of Central South University(2020zzts424,2020zzts422)。
文摘Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food.
基金supported by the National Natural Science Foundation of China(32101883)Fellowship China Postdoctoral Science Foundation(2021M693902)National Agricultural Science and Technology Innovation Project(CAAS-ASTIP-2022)。
文摘Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reaction is considered as a promising method to enhance the antioxidant activity of peptides.Hence,this research aims at investigating the Maillard glycosylation activity and antioxidant activity of bone collagen hydrolysates from different sources.In this study,3 glycosylated bone collagen hydrolysates were prepared and characterized,and cytotoxicity and antioxidant activity were analyzed and evaluated.The free amino groups loss,browning intensity,and fluorescence intensity of G-Cbcp(glycosylated chicken bone collagen hydrolysates(peptides))were the heaviest,followed by G-Pbcp(glycosylated porcine bone collagen hydrolysates(peptides))and G-Bbcp(glycosylated bovine bone collagen hydrolysates(peptides)).The results of amino acid analysis showed that amino acid composition of different bone collagen hydrolysates was significantly different and the amino acid decreased to different degrees after Maillard glycosylated reaction,which may lead to differences in Maillard glycosylated reaction activity.Furthermore,the 3 glycosylated hydrolysates showed no significant cytotoxicity.The results showed that glycosylation process significantly increased the antioxidant activity of bone collagen hydrolysates,and G-Cbcp showed the strongest antioxidant activity,followed by G-Pbcp and G-Bbcp.Therefore,compared with the bone collagen hydrolysates,3 glycosylated hydrolysates showed significant characteristic and structural changes,and higher antioxidant activity.
基金the National Key R&D Program of China(Grant No.2021YFB3803003)the Youth Innova-tion Promotion Association of Chinese Academy of Sciences(Grant No.2023311)+1 种基金Zhejiang Public Welfare Technology Application Research Project(Grant No.LGG22E010013)Class III Peak Discipline of Shanghai-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing).
文摘This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.
基金Support for this student's (Lauren Brewer) training project is provided by USDA National Needs Graduate Fellowship Competitive Grant No. 2008-38420-04773 from the National Institute of Food and Agriculturenumber 12-473-J from the Kansas Agricultural Experiment Stationfinancially supported by Mahasarakham University.
文摘Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.
基金supported by Winter Sports Nutrition Research Center in Beijing Sport University supported by Herbalife Nutrition~(TM)Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0993 to Y.X.)Exercise and Physical Fitness,the Key Laboratory of Ministry of Education in Beijing Sport University。
文摘Nuclear factor erythroid-derived 2-like 2(Nrf2)is the master regulator of antioxidant defenses.High-intensity interval training(HIIT)has been proposed as a time-efficient training program and has become a substantial component of modern training program In the present study,we evaluated the effects of sulforaphane(SFN),a dietary isothiocyanate derived from cruciferous vegetables and a potent Nrf2 activator,on Nrf2-mediated antioxidant defense responses of skeletal muscle induced by exhaustive exercise in HIIT mice.Male C57 BL/6 J mice were randomly allocated into control group,HIIT group,and HIIT pretreated with SFN(HIIT+SFN)group.On the third day after completion of a 6-weeks HIIT protocol,an exhaustive treadmill test was conducted in all mice.Mice were intraperitoneally injected with SFN(HIIT+SFN group)or PBS(HIIT and control mice)4 times in 3 days prior to the exhaustive treadmill test.The results indicated that the 6-weeks HIIT protocol did not increase the antioxidative capacity of skeletal muscle during exhaustive exercise.Importantly,SFN treatment improved anti oxidative capacity of skeletal muscle in response to the acute exhaustive exercise by increasing mRNA and nucleoprotein expression of Nrf2 and these genes involved in antioxidant generation and decreasing blood creatine kinase(CK)and 4-hydroxy-2-nonenal(4-HNE)-modified protein levels in the HIIT mice.
文摘The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.
文摘The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items is reported using high performance liquid chromatography (HPLC). A Cls column is used as the stationary phase, acetonltrile and water:Acetic acid (1%) is used as the mobile phase of gradient elution and the UV detec- tor is set at 280 nm. Under the above conditions, four antioxidents is completely separated within 8 rain. The limit of detection, linear range, and reproducibility of HPLC are evaluated. Isolation parameters of SPAs from different types of food items (cooking oil, margarine and butter, and cheese) are optimized. SPAs are extracted from food items through extraction with methanol/acetonitrile (1 : 1, in volume), vortex, ultrasonic treatment and precipitation in a freezer (2 h). For cooking oil margarine, butter and cheese at 50 and 200 rag/L, recoveries of SPAs are 93.3%0--108.3% (PG), 85.3~^--108.3~~ (TBHQ), 96.7~^--101.2~/6 (BHA), and 73.9^-- 94.6% (BHT). The method is applied to the determination of SPAs in 38 food items (16 cooking oils, 8 mar- garine, 6 butter and 6 cheese samples). The levels of SPAs in positive samples are all below the legal limits of China.
基金financially supported by the National Natural Science Foundation(31500323 41501583 31370426)
文摘This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage.
基金supported by the Postdoctoral Fellowship from Drug Delivery System Excellent Center,Department of Pharmaceutical Technology,Faculty of Pharmaceutical Science,Prince of Songkla University
文摘Physicochemical characteristics and in vitro antioxidant activities of four pyroligneous acids carbonized from the wastes of wood species including Mangosteen (Garcinia mangostana Linn.), Durian (Durio zibethinus L.), Rambutan (Nephelium lappaceum L.), and Langsat (Lansium domesticum Serr.) were assessed. Appearing as transparent liquors with pH 3.9–4.2, the pyroligneous acid samples under test possessed acetic acid (23.22–25.46%) as the dominant component. The total soluble tar, total acid, and water content were 0.15 - 0.28 wt%, 99–192 mg KOH/g and 84.5–93.5 wt%, respectively. Phenolic compounds namely: 2,6-dimethoxyphenol (6.88–9.69%),phenol (2.97–5.88%), 4-methylsyringol (3.10–3.56%), guaiacol (2.36–3.55%), and 2-methoxy-4-methylphenol (1.08–1.28%) were found. All had in vitro antioxidant activities especially mangosteen pyroligneous acid, which showed activity roughly similar to BHT (P>0.05) against anti-lipid peroxidation. Nitric oxide scavenging capacities of all pyroligneous acids were significantly higher than BHT (P<0.05). Our results suggest that pyroligneous acids from the four types of branch waste could be used as sources of beneficial natural antioxidants, possibly as food or feed additives to protect against lipid peroxidation, and potentially also in veterinary medicine in anti-inflammatory products.
文摘The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphenyl-2-picrylhydrazyl (DPPH), the inhibition activity for peroxidation of linoleic acid, and the reduction power. The methanol-extracts of moso bamboo culms and madake bamboo leaves presented stronger antioxidant activity compared with DPPH scavenging activity. Methanol-extract of moso bamboo culms was further fractionated by different solvents and n-butanol soluble fraction exhibited the most significant activity in the DPPH scavenging assay. The fractionation of n-butanol soluble extract was isolated by silica gel column with gradient mixture solvent of chloroform and methanol. The isolated fractions were directed by the antioxidant activity measured by scavenging the stable DPPH free radical. It was observed that most of the eluted fractions showed the antioxidative activity. Fractions acquired from elution with the mixture solvent of chloroform and methanol (10:1–5:1) showed stronger antioxidant activity than the other fractions.
文摘The aqueous extract of Phellodendron amurense Rupr. (Amur Cork Tree) provides a rich source of antioxidants and chemical compounds, and can be used for food and wood preservative materials. In this study, we characterized the chemical composition of this extract by GC and GC/MS. The antioxidant capacity was evaluated using a variety of antioxidant assays (superoxide radical, hydroxyl radical, nitric oxide radical, and DPPH radical scavenging activity). Additionally, total polyphenolic content was determined. Phenolic acids and acetone derivatives were major compounds of the extract capable of scavenging the DPPH free radical and reducing ferric ions. DPPH and ferric ion reduction results were strongly correlated with total phenolic content of the extract which also exhibited strong nitric oxide, hydroxyl radical scavenging and superoxide anion radical scavenging activities.
基金supported by the National Key Research and Development Program of China during the ‘‘13th5-Year Plan’’(Grant No.2016YFC0500307-07)a Grant from the Application Technology Research and Development Program of Harbin(Grant No.2017RALXJ001)
文摘Total phenols,flavonoids,procyanidins,and total antioxidant capacity,measured with ferric reducing antioxidant power,radical scavenging capacity,and oxygen radical absorption capacity assays were first evaluated in the extracts of the shells,skins and kernels of 10 varieties of Pinus koraiensis.Results indicate that these varieties had strong radical scavenging capacities,ferric reducing antioxidant power and oxygen radical absorption capacities.Phenolic,flavonoid and procyanidin values ranged from 138.6(#3 kernel)to 518.6(#10 shell)mg GAE/g,from 23.3(#2 kernel)to 70.8(#5 skin)mg RE/g,from 2.5(#2 kernel)to 142.1(#7 skin)mg CE/g,respectively.Radical scavenging capacity and ferric reducing antioxidant power values were positively correlated to the polyphenol contents which play a major role in antioxidant properties.The varieties may be divided into two groups by cluster analysis and the variables being measured.These results will be useful for breeding varieties and guiding their production.
文摘Benzoxazinone 2 was prepared and reacted with formamide,acetamide,some primary aromatic amines and heterocyclic amines giving the corresponding quinazolone derivatives 3-15 respectively.The reaction of benzoxazinone 2 with hydrazine hydrate and phenyl hydrazine was also studied.Representative compounds of the synthesized products were evaluated as antioxidants and corrosion inhibitors for gasoline engine lubricating oil.The highest antioxidant activities were obtained with compounds 10-15.The optimum concentration recommended for these new additives was found to be 0.lg for 1L ofoil for compounds 13-15.In addition,some of the highly effective antioxidant additives,namely 10-15,were thermally analyzed by using thermogravimetric analysis (TGA) and differential thermal gravimetric analysis (DTGA) techniques and the results indicated that compounds are thermally stable and could be used under thermal conditions.Moreover,a comparison of the oxidation stability between the tested oil containing the prepared products and lubricating oil containing commercial additives was also studied.