Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a no...Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.展开更多
Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper ...Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/re. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No. 20 steel plate. The proposed method has laid a foundation for further practical engineering application.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602)the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169)。
文摘Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.
基金Supported by the National Natural Science Foundation of China(51275048)
文摘Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/re. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No. 20 steel plate. The proposed method has laid a foundation for further practical engineering application.