期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Applying memetic algorithm-based clustering to recommender system with high sparsity problem 被引量:2
1
作者 MARUNG Ukrit THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS 2014年第9期3541-3550,共10页
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared... A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively. 展开更多
关键词 memetic algorithm recommender system sparsity problem cold-start problem clustering method
在线阅读 下载PDF
A genetic Gaussian process regression model based on memetic algorithm 被引量:2
2
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《Journal of Central South University》 SCIE EI CAS 2013年第11期3085-3093,共9页
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o... Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process. 展开更多
关键词 Gaussian process hyper-parameters optimization memetic algorithm regression model
在线阅读 下载PDF
Memetic algorithm for multi-mode resource-constrained project scheduling problems 被引量:1
3
作者 Shixin Liu Di Chen Yifan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期609-617,共9页
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The f... A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30. 展开更多
关键词 project scheduling RESOURCE-CONSTRAINED multi-mode memetic algorithm (MA) local search procedure.
在线阅读 下载PDF
Hybrid optimization of dynamic deployment for networked fire control system 被引量:7
4
作者 Chen Chen Jie Chen Bin Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期954-961,共8页
With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make full use of limited battlefield resources and maximally... With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make full use of limited battlefield resources and maximally destroy enemy targets from arbitrary angle in a limited time, the research on firepower nodes dynamic deployment becomes a key problem of command and control. Considering a variety of tactical indexes and actual constraints in air defense, a mathematical model is formulated to minimize the enemy target penetration probability. Based on characteristics of the mathematical model and demands of the deployment problems, an assistance-based algorithm is put forward which combines the artificial potential field (APF) method with a memetic algorithm. The APF method is employed to solve the constraint handling problem and generate feasible solutions. The constrained optimization problem transforms into an optimization problem of APF parameters adjustment, and the dimension of the problem is reduced greatly. The dynamic deployment is accomplished by generation and refinement of feasible solutions. The simulation results show that the proposed algorithm is effective and feasible in dynamic situation. 展开更多
关键词 deployment optimization artificial potential field (APF) constraint handling generation of feasible solutions memetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部