期刊文献+
共找到9,321篇文章
< 1 2 250 >
每页显示 20 50 100
Growth kinetics of borided 316 L stainless steel obtained by selective laser melting
1
作者 DEMIRCI Selim TÜNÇAY Mehmet Masum 《Journal of Central South University》 2025年第2期332-349,共18页
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori... Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels. 展开更多
关键词 316L stainless steel BORIDING KINETICS additive manufacturing selective laser melting
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
2
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
3
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact 被引量:1
4
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
在线阅读 下载PDF
Evolution of microstructure and mechanical properties in multi-layer 316L-TiC composite fabricated by selective laser melting additive manufacturing
5
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TASCI Elina AKBARZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2973-2991,共19页
In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,... In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles. 展开更多
关键词 multilayer metal-ceramic composites selective laser melting functionally graded materials 316 L stainless steel TIC
在线阅读 下载PDF
Dephosphorization of high-phosphorus iron ore by direct reduction of hydrogen-rich gases and melting separation
6
作者 ZHAO Lian-da WU De-yin +6 位作者 YOU Xiao-min DENG Xing-jian ZUO Hai-bin SHE Xue-feng XUE Qing-guo WANG Guang WANG Jing-song 《Journal of Central South University》 CSCD 2024年第11期4120-4136,共17页
This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellet... This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores. 展开更多
关键词 high-phosphorus iron ore hydrogen-rich gas reduction phosphorus transport mineral evolution melting separation
在线阅读 下载PDF
Enhanced engineering and biocidal polypropylene filaments enabling melt reduction of AgNO_(3) through PVP agent:A scalable process for the defense industry with MEX additive manufacturing
7
作者 Markos Petousis Nikolaos Michailidis +7 位作者 Vassilis Papadakis Apostolos Argyros Mariza Spiridaki Nikolaos Mountakis John Valsamos Nektarios K.Nasikas Amalia Moutsopoulou Nectarios Vidakis 《Defence Technology(防务技术)》 2025年第2期52-66,共15页
This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printin... This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries. 展开更多
关键词 Polypropylene(PP) Polyvinyl pyrrolidone(PVP) Silver nitride(AgNO_(3)) In-situ reactive melt mixing process Material extrusion(MEX)3D printing Biocidal performance
在线阅读 下载PDF
TWO EPISODES OF MONAZITE CRYSTALLIZATION DURING METAMORPHISM AND CRUSTAL MELTING IN THE EVEREST REGION OF THE NEPALESE HIMALAYA 被引量:31
8
作者 Robert L. Simpson 1, Randall R. Parrish 2, Mike P. Searle 1, David J. Waters 1 2 NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, UK) 《地学前缘》 EI CAS CSCD 2000年第S1期27-27,共1页
New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase m... New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase metamorphic history, with peak Barrovian metamorphism at (32 2±0 4)Ma and a later high\|temperature, low\|pressure event (620℃, 400MPa) at (22 7±0 2)Ma.. Emplacement and crystallization of the Everest granite subsequently occurred at 20 5~21 3Ma. The monazite crystallization ages that differ by 10Ma are recorded in two structurally adjacent rocks of different lithology, which have the same post collisional p—T history.. Scanning electron microscopy reveals that the younger monazite is elaborately shaped and grew in close association with apatite at grain boundaries and triple junctions, suggesting that growth was stimulated by a change in the fluid regime. The older monazite is euhedral, is not associated with apatite, and is commonly armoured within silicate minerals. During the low\|pressure metamorphic event, the armouring protected the older monazites, and a lack of excess apatite in this sample prevented new growth. Textural relationships suggest that apatite is one of the necessary monazite\|producing reactants, and spots within monazite that are rich in Ca, Fe, Al and Si suggest that allanite acted as a preexisting rare earth element host. We propose a simplified reaction for monazite crystallization based on this evidence. 展开更多
关键词 MONAZITE crystallization METAMORPHISM CRUSTAL melting Everest region NEPALESE HIMALAYA
在线阅读 下载PDF
Multiple-response optimization for melting process of aluminum melting furnace based on response surface methodology with desirability function 被引量:3
9
作者 周孑民 王计敏 +2 位作者 闫红杰 李世轩 贵广臣 《Journal of Central South University》 SCIE EI CAS 2012年第10期2875-2885,共11页
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ... To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy. 展开更多
关键词 aluminum melting furnace melting process response surface methodology desirability function multiple response parameter optimization numerical simulation PLACKETT-BURMAN design BOX-BEHNKEN design
在线阅读 下载PDF
Experimental study on mechanism of influence of laser energy density on surface quality of Ti-6Al-4V alloy in selective laser melting 被引量:10
10
作者 SHI Wen-tian LI Ji-hang +3 位作者 LIU Yu-de LIU Shuai LIN Yu-xiang HAN Yu-fan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3447-3462,共16页
This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of... This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of scanning speed, hatching space, and laser power on surface quality were analyzed, and the optimal LED range for surface quality was determined. The results show that pores and spherical particles appear on the sample’s surface when low LED is applied, while there are lamellar structures on the sides of the samples. Cracks appear on the sample’s surface,and the splash phenomenon increases when a high LED is taken. At the same time, a large amount of unmelted powder adhered to the side of the sample. The surface quality is the best when the LED is 150-170 J/mm^(3). The preferred hatch space is currently 0.05-0.09 mm, the laser power is 200-350 W, and the average surface roughness value is(15.1±3) μm.The average surface hardness reaches HV404±HV3, higher than the forging standard range of HV340-HV395.Increasing the LED within the experiment range can increase the surface hardness, yet an excessively high LED will not further increase the surface hardness. The microstructure is composed of needle-like α’-phases with a length of about 20μm, in a crisscross ‘N’ shape, when the LED is low. The β-phase grain boundary is not obvious, and the secondaryphase volume fraction is high;when the LED is high, the α’-phase of the microstructure is in the form of coarse slats, and the secondary-phase is composed of a small amount of secondary α’-phase, the tertiary α’-phase and the fourth α’-phase disappear, and the volume fraction of the secondary-phase becomes low. 展开更多
关键词 laser energy density surface quality selective laser melting TI-6AL-4V MICROSTRUCTURE
在线阅读 下载PDF
A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting 被引量:4
11
作者 逯圣路 汤慧萍 +3 位作者 马前 洪权 曾立英 D.H.StJohn 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2857-2863,共7页
A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and... A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles. 展开更多
关键词 titanium alloys additive manufacturing rare earth elements YTTRIUM selective electron beam melting
在线阅读 下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:14
12
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
在线阅读 下载PDF
Microstructure,mechanical properties and corrosion performance of selective laser melting Ti/GNPs composite with a porous structure 被引量:4
13
作者 YANG Xin ZHANG Zhao-yang +5 位作者 WANG Ben MA Wen-jun WANG Wan-lin CHEN Wen-ge KANG Ning-ning LIU Shi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2257-2268,共12页
In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical prop... In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical properties and corrosion performance of the SLM GNPs/Ti were systematically investigated.Results of microstructure characterization show that:1)the density of the SLM GNPs/Ti was improved as compared to that of the SLM Ti;2)abundant TiC particles were formed in the SLM GNPs/Ti.The hardness and compressive strength of the composite increased by 90%(from HV 236 to HV 503)and 14%(from 277 MPa to 316 MPa),respectively,attributed to the uniformly distributed TiC and fine GNPs in the Ti matrix.Electrochemical tests reveal that the corrosion current density of the SLM GNPs/Ti is only 0.328μA/cm^(2),that is about 25%less than that of the SLM Ti.The results indicate that the incorporation of nano-graphene is a potential method to strengthen the Ti by SLM. 展开更多
关键词 porous GNPs/Ti composites selective laser melting MICROSTRUCTURE mechanical properties corrosion properties
在线阅读 下载PDF
Melting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous medium 被引量:4
14
作者 M.JAVED M.FAROOQ +1 位作者 S.AHMAD Aisha ANJUM 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2701-2711,共11页
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr... The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter. 展开更多
关键词 melting heat transfer porous medium stagnation point variable sheet thickness homogeneous– heterogeneous reaction
在线阅读 下载PDF
Melting, sintering and wetting properties of ZnO–Bi_2O_3–B_2O_3 sealing glass 被引量:4
15
作者 何峰 何子君 +2 位作者 谢峻林 梅书霞 金明芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1541-1547,共7页
Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological beha... Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological behavior of ZnO-Bi_2O_3-B_2O_3 system glass melt,the properties of viscosity,thermal expansion,fluxion property and wetting process between cylinder samples and stainless steel were investigated with the rotating crucible viscometer,dilato meter and high-temperature microscope.The structure of sintered glass samples was investigated with scanning electron microscope.The results show that the B_2O_3 content increasing in B_1-B_3 at the given temperature between 400 ℃ and 500 ℃ leads to the increasing of the sample viscosity.When the amount of B_2O_3 increases from 5.24%to 9.24%(mass fraction),the coefficients of thermal expansion of glass samples decrease smoothly from 10.94×10^(-6) to10.71×10^(-6) and 10.38×10^(-6) ℃^(-1) respectively.In the case of sealing temperature,its value increases from 453 ℃ to 494 ℃.ZnO-Bi_2O_3-B_2O_3 system low-melting glass powder sintering was with viscous liquid to participate,which could make the densification of glass sample more effective and more efficient.With the content of B_2O_3 increasing,the wetting angle between the glasses samples and stainless steel could also increase,and the resulting appropriate sealing temperature range is 460-490 ℃. 展开更多
关键词 sintering Bi2O3 melting wetting sealing glasses melting stainless rheological viscosity
在线阅读 下载PDF
Heating and melting mechanism of stainless steelmaking dust pellet in liquid slag 被引量:1
16
作者 彭及 唐谟堂 +3 位作者 彭兵 余笛 J. A. KOZINSKI 唐朝波 《Journal of Central South University of Technology》 EI 2007年第1期32-36,共5页
The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in th... The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity. 展开更多
关键词 HEATING melting MECHANISM stainless steelmaking dust RECYCLING
在线阅读 下载PDF
Effect of Carbon and Sulfur on Iron Melting at High Pressure:Implications for Composition and Evolution of the Planetary Terrestrial Cores
17
作者 L.W.Deng~1,Y.W.Fei~2,X.Liu~1,Z.Z.Gong~3 1.School of Earth and Space Science,Peking University,Beijing 100871,China. 2.Geophysical Laboratory,Carnegie Institution of Washington,5251 Broad Branch Road,NW,DC 20015,USA 3.Institute of Spacecraft Environment Engineering,Beijing 100094,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期204-204,共1页
The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential can... The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential candidates based on cosmochemical considerations(Stevenson,1981).High-pressure experiment results,in conjunction with theoretical and cosmochemical evidences,argued that it is difficult for any one of them to account for the core 展开更多
关键词 sulfur-carbon-iron high pressure melting PLANETARY core
在线阅读 下载PDF
Redistribution of Trace Elements During Shock-inducd Melting and Phase Tranzition of Minerals in the Suizhou l6 Chondrite
18
作者 XIE Xiande ZHANG Hong WANG Chunyun 《矿物学报》 CAS CSCD 北大核心 2013年第S1期116-116,共1页
The Suizhou meteorite is an L6 chondrite. This meteorite is consisted of olivine, low-Ca pyroxene, plagioclase, FeNi metal, troilite, whitlockite, chlorapatite, chromite and ilmenite. Olivine and pyroxene grains displ... The Suizhou meteorite is an L6 chondrite. This meteorite is consisted of olivine, low-Ca pyroxene, plagioclase, FeNi metal, troilite, whitlockite, chlorapatite, chromite and ilmenite. Olivine and pyroxene grains display shock-induced mosaic texture, and most plagioclase grains were melted and transformed to maskelynite. This meteorite contains a few very thin shock-produced melt veins ranging from 20 to 100 μm in width. They are chondritic in composition and contain abundant high-pressure minerals in two assemblages. One is the coarse-grained assemblage of ringwoodite, majorite, lingunite with minor amount of tuite, xieite, the CF-phase, akimotoite and amorphized perovskite, and the fine-grained assemblage (the melt vein matrix) composed of majorite-pyrope garnet, magnesiowüstite. FeNi metal and troilite in the Suizhou shock veins were molten and occur as small intergrowth grains or veinlets filling the interstices of garnet crystals or cracks in the vein matrix. It was revealed that olivine, pyroxene and plagioclase in the Suizhou shock veins have transformed in solid state to their high-pressure polymorphs ringwoodite, majorite, and lingunite, respectively, without change in their chemical compositions. 展开更多
关键词 trace element shock melting PHASE transition LA-ICP-MS Suizhou METEORITE
在线阅读 下载PDF
Effect of sample radius on stability of electromagnetic levitation melting
19
作者 马伟增 郑红星 +1 位作者 季诚昌 李建国 《Journal of Central South University of Technology》 2004年第1期31-35,共5页
Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was establis... Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was established. Considering the limitation of levitation force and levitation sample temperature,the principle of stability levitation zone computation was determined. A spherical sample (ThDy)Fe2 under the protection of argon gas was examined, and the effect of radius of levitation sample and perturbation on the stable levitation zone was investigated. The results show that longitudinal perturbation and transverse perturbation can shorten the length of stable levitation zone and the range of levitation sample radius. By increasing the sample radius and weakening the perturbation the electromagnetic levitation melting stability of sample can be improved. 展开更多
关键词 electromagnetic levitation melting stable levitation zone PERTURBATION (TbDy)Fe_2 alloy
在线阅读 下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
20
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2)and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2)phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2)oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2)is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2)particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2)increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2)in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZrB_(2)-SiC oxidation behavior reactive melt infiltration
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部