目的探究毛兰素(Erianin)在特应性皮炎(atopic dermatitis,AD)中的作用及其在高迁移率族蛋白1(high mobility group box-1,HMGB1)/晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)-Ras同源基因家族成员A(Ra...目的探究毛兰素(Erianin)在特应性皮炎(atopic dermatitis,AD)中的作用及其在高迁移率族蛋白1(high mobility group box-1,HMGB1)/晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)-Ras同源基因家族成员A(Ras homolog gene family member A,RhoA)/Rho关联含卷曲螺旋结合蛋白激酶1(recombinant Rho associated coiled coil containing protein kinase 1,ROCK1)信号通路中的调控机制。方法1-氯-2,4-二硝基苯(1-Chloro-2,4-dinitrobenzene,DNCB)诱导BALB/c小鼠作为AD的模型,测量小鼠的皮肤厚度、脾和淋巴结的重量。甲苯胺蓝和HE染色检测小鼠的背部皮肤和耳朵的病理改变;ELISA检测炎症因子水平;肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)刺激HaCaT细胞建立AD体外模型;采用流式细胞术检测细胞活性氧(reactive oxygen species,ROS);免疫荧光法检测线粒体活性氧(mitochondrion reactive oxygen species,mtROS);TUNEL检测细胞凋亡情况;免疫蛋白印迹法检测HMGB1、RAGE、RhoA、ROCK1蛋白表达情况。结果在体内实验中毛兰素抑制皮肤厚度的增加,减轻脾和淋巴结重量,改善炎症细胞的浸润和肥大细胞脱颗粒,降低炎症因子水平(P<0.05)。在体外实验中,毛兰素减少TNF-α诱导的HaCaT细胞ROS、mtROS的产生(P<0.01)。毛兰素治疗后HMGB1、RAGE、RhoA及ROCK1的蛋白表达量下降(P<0.01);使用RAGE特异性阻断剂(TFA)处理r-HMGB1刺激的HaCaT细胞后,HMGB1的表达没有发生变化,RAGE、RhoA及ROCK1表达减少(P<0.01);在Rho激酶抑制剂Y-27632+r-HMGB1组中,除RAGE的表达没有降低,其余结果与TFA+r-HMGB1组相近。结论毛兰素可能通过调节HMGB1/RAGE-RhoA/ROCK1信号通路缓解特应性皮炎。展开更多
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int...Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).展开更多
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c...The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.展开更多
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ...This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.展开更多
Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But ...Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But the data of the Cenozoic post\|collisional volcanism in central and southern Tibet is limited (Coulon et al., 1986; Turner et al., 1996; Zhang, 1998). These potassic and ultrapotassic intrusive and extrusive rocks are regarded to be a key clue for the deep lithospheric process of the plateau after Indo\|Asian collision. Present here is the preliminary results of the rocks from Oiyug (Wuyu) basin, about 150km northeast to Shigatse. Major and trace elements of the rocks are studied and compared with the ultrapotassic and potassic (shoshonitic) rocks exposed in Lhasa block and Qiangtang terrane.(1) Geologic setting. The magmatic rocks studied are Gazacun formation of the lower part of the Pliocene Oiyug group (N 2 oy ). The cross\|section is situated in Gazacun village of Namling. Gazacun formation is underlain unconformable by the andesitic rocks of Linzizong Group [(K 2—E 2) ln ], and covered by the coarse\|grain layered sandstone and conglomerate of Zongdangcun formation. The Gazacun formation consists of mediate\|acidic volcanics, granite\|porphyry, coal\|bearing clastics, plants and sporo\|pollen.展开更多
The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic str...The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.展开更多
文摘目的探究毛兰素(Erianin)在特应性皮炎(atopic dermatitis,AD)中的作用及其在高迁移率族蛋白1(high mobility group box-1,HMGB1)/晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)-Ras同源基因家族成员A(Ras homolog gene family member A,RhoA)/Rho关联含卷曲螺旋结合蛋白激酶1(recombinant Rho associated coiled coil containing protein kinase 1,ROCK1)信号通路中的调控机制。方法1-氯-2,4-二硝基苯(1-Chloro-2,4-dinitrobenzene,DNCB)诱导BALB/c小鼠作为AD的模型,测量小鼠的皮肤厚度、脾和淋巴结的重量。甲苯胺蓝和HE染色检测小鼠的背部皮肤和耳朵的病理改变;ELISA检测炎症因子水平;肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)刺激HaCaT细胞建立AD体外模型;采用流式细胞术检测细胞活性氧(reactive oxygen species,ROS);免疫荧光法检测线粒体活性氧(mitochondrion reactive oxygen species,mtROS);TUNEL检测细胞凋亡情况;免疫蛋白印迹法检测HMGB1、RAGE、RhoA、ROCK1蛋白表达情况。结果在体内实验中毛兰素抑制皮肤厚度的增加,减轻脾和淋巴结重量,改善炎症细胞的浸润和肥大细胞脱颗粒,降低炎症因子水平(P<0.05)。在体外实验中,毛兰素减少TNF-α诱导的HaCaT细胞ROS、mtROS的产生(P<0.01)。毛兰素治疗后HMGB1、RAGE、RhoA及ROCK1的蛋白表达量下降(P<0.01);使用RAGE特异性阻断剂(TFA)处理r-HMGB1刺激的HaCaT细胞后,HMGB1的表达没有发生变化,RAGE、RhoA及ROCK1表达减少(P<0.01);在Rho激酶抑制剂Y-27632+r-HMGB1组中,除RAGE的表达没有降低,其余结果与TFA+r-HMGB1组相近。结论毛兰素可能通过调节HMGB1/RAGE-RhoA/ROCK1信号通路缓解特应性皮炎。
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金Project(2022m07020007)supported by the Key Research and Development Projects of Anhui Province,ChinaProjects(52174102,52074006,51404011,51874002,51974009)supported by the National Natural Science Foundation of China+1 种基金Project(2024cx1017)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,ChinaProject(2024AH040067)supported by the Natural Science Research Project of Anhui Educational Committee,China。
文摘Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).
基金Projects(42307192,41831278)supported by the National Natural Science Foundation of ChinaProject(CKWV20231175/KY)supported by the CRSRI Open Research Program,China。
文摘The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.
基金Project(52278380)supported by the National Natural Science Foundation of ChinaProject(2023JJ30670)supported by the National Science Foundation of and Technology Major Project of Hunan Province,China。
文摘This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.
文摘Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But the data of the Cenozoic post\|collisional volcanism in central and southern Tibet is limited (Coulon et al., 1986; Turner et al., 1996; Zhang, 1998). These potassic and ultrapotassic intrusive and extrusive rocks are regarded to be a key clue for the deep lithospheric process of the plateau after Indo\|Asian collision. Present here is the preliminary results of the rocks from Oiyug (Wuyu) basin, about 150km northeast to Shigatse. Major and trace elements of the rocks are studied and compared with the ultrapotassic and potassic (shoshonitic) rocks exposed in Lhasa block and Qiangtang terrane.(1) Geologic setting. The magmatic rocks studied are Gazacun formation of the lower part of the Pliocene Oiyug group (N 2 oy ). The cross\|section is situated in Gazacun village of Namling. Gazacun formation is underlain unconformable by the andesitic rocks of Linzizong Group [(K 2—E 2) ln ], and covered by the coarse\|grain layered sandstone and conglomerate of Zongdangcun formation. The Gazacun formation consists of mediate\|acidic volcanics, granite\|porphyry, coal\|bearing clastics, plants and sporo\|pollen.
基金Project(2007CB209400) supported by the Major State Basic Research and Development Program of ChinaProject(50774093) supported by the National Natural Science Foundation of ChinaProject(200801) supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines
文摘The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.