期刊文献+
共找到129,925篇文章
< 1 2 250 >
每页显示 20 50 100
Biomaterial‑based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration 被引量:1
1
作者 Ying-Ying Li Shuai-Fei Ji +2 位作者 Xiao-Bing Fu Yu-Feng Jiang Xiao-Yan Sun 《Military Medical Research》 2025年第1期96-120,共25页
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.A... Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration,promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions.The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties.However,a comprehensive understanding of the underlying mechanisms remains somewhat elusive,limiting the broader application of these innovations.In this review,we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin.The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration.The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity,facilitating efficient cellular reprogramming and,consequently,promoting the regeneration of skin appendages.In summary,the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing,coupled with the restoration of multiple skin appendage functions. 展开更多
关键词 SCARLESS Wound healing Biomaterials mechanical cues Skin appendages
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
2
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties Thermal properties mechanical stirrer Sonication
在线阅读 下载PDF
Chemical genetic approaches to dissect microbiota mechanisms in health and disease
3
作者 Xinglin Yang 《四川生理科学杂志》 2025年第1期162-162,共1页
Advances in genomics,proteomics,and metabolomics have revealed associations between specific microbiota species in health and disease.However,the precise mechanism(s)of action for many microbiota species and molecules... Advances in genomics,proteomics,and metabolomics have revealed associations between specific microbiota species in health and disease.However,the precise mechanism(s)of action for many microbiota species and molecules have not been fully elucidated,limiting the development of microbiota-based diagnostics and therapeutics.In this Review,we highlight innovative chemical and genetic approaches that are enabling the dissection of microbiota mechanisms and providing causation in health and disease.Although specific microbiota molecules and mechanisms have begun to emerge,new approaches are still needed to go beyond phenotypic associations and translate microbiota discoveries into actionable targets and therapeutic leads to prevent and treat diseases. 展开更多
关键词 mechanISMS TRANSLATE PRECISE
在线阅读 下载PDF
Elucidating the anti-obesity phytochemicals in Chenpi and their molecular mechanisms
4
作者 Jinhai Luo Weiqi Yan +1 位作者 Zhi Chen Baojun Xu 《Food Science and Human Wellness》 2025年第4期1224-1238,共15页
Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This... Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This study investigated the anti-obesity phytochemicals and molecular mechanisms involved in treating obesity by Chenpi through network pharmacology and molecular docking.A total of 17 bioactive phytochemicals from Chenpi and its 475 related anti-obesity targets have been identified.The KEGG pathway analysis showed that the PI3K/Akt signaling pathway,MAPK signaling pathway,AMPK signaling pathway,and nuclear factor kappa B signaling pathway are the main signaling pathways involved in the anti-obesity effect of Chenpi.According to molecular docking analysis,the phytochemicals of Chenpi can bind to central anti-obesity targets.Based on the ADMET analysis and network pharmacology results,tangeretin exhibited the lowest predicted toxicity and potential for anti-obesity effects.In the in vitro lipid accumulation model,tangeretin effectively suppressed the free fatty acid-induced lipid in Hep G2 cells by upregulating the PI3K/Akt/GSK3βsignaling pathway based on the result of q-PCR and Western blotting.The outcomes of this research give insights for future research on the anti-obesity phytochemicals and molecular mechanisms derived from Chenpi,also providing the theoretical basis for developing anti-obesity functional foods based on Chenpi. 展开更多
关键词 Chenpi PHYTOCHEMICALS OBESITY Network pharmacology Molecular mechanism Signaling pathway
在线阅读 下载PDF
Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
5
作者 Shan-Shan Chen Yi-Long Xie +4 位作者 Jing-Jing Zhang Na-Na Zhang Yong-Rui Guo Huan Yang Yong Ma 《Chinese Physics B》 2025年第1期315-322,共8页
We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)proc... We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects. 展开更多
关键词 mechanical squeezing optomechanical system backward stimulated Brillouin scattering Duffing nonlinearity
在线阅读 下载PDF
Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite
6
作者 Yemao He Johnny Qing Zhou +3 位作者 Yanan Jiao Hongshuai Lei Zeang Zhao Daining Fang 《Defence Technology(防务技术)》 2025年第2期1-16,共16页
The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ... The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy. 展开更多
关键词 UHMWPE composite Ballistic response mechanism Theoretical model Performance evaluation
在线阅读 下载PDF
Endophilin A2 controls touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking
7
作者 Man-Xiu Xie Ren-Chun Lai +8 位作者 Yi-Bin Xiao Xi Zhang Xian-Ying Cao Xiao-Yu Tian An-Nan Chen Zi-Yi Chen Yan Cao Xiao Li Xiao-Long Zhang 《Military Medical Research》 2025年第2期157-183,共27页
Background Tactile and mechanical pain are crucial to our interaction with the environment,yet the underpinning molecular mechanism is still elusive.Endophilin A2(EndoA2)is an evolutionarily conserved protein that is ... Background Tactile and mechanical pain are crucial to our interaction with the environment,yet the underpinning molecular mechanism is still elusive.Endophilin A2(EndoA2)is an evolutionarily conserved protein that is documented in the endocytosis pathway.However,the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear.Methods Male and female C57BL/6 mice(8–12 weeks)and male cynomolgus monkeys(7–10 years old)were used in our experiments.Nerve injury-,inflammatory-,and chemotherapy-induced pathological pain models were established for this study.Behavioral tests of touch,mechanical pain,heat pain,and cold pain were performed in mice and nonhuman primates.Western blotting,immunostaining,co-immunoprecipitation,proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms.Results The results showed that EndoA2 was primarily distributed in neurofilament-200-positive(NF200+)medium-to-large diameter dorsal root ganglion(DRG)neurons of mice and humans.Loss of EndoA2 in mouse NF200+DRG neurons selectively impaired the tactile and mechanical allodynia.Furthermore,EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons.Moreover,as an adaptor protein,EndoA2 also bound to kinesin family member 5B(KIF5B),which was involved in the EndoA2-mediated membrane trafficking process of Piezo2.Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents,and re-expression of EndoA2 rescued the MA currents.In addition,interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates.Conclusions Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals.EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons.Our findings identify a potential new target for the treatment of mechanical pain. 展开更多
关键词 Endophilin A2 TOUCH mechanical allodynia Piezo2 KIF5B
在线阅读 下载PDF
Unraveling post-growth mechanisms of monolayer CsPbBr3 nanocubes:Laser-enhanced transformations and cathodoluminescence-electron microscopy correlations
8
作者 Mingxing Li Xiaoge Wang +5 位作者 Xiaofan Cao Zhiqun He Chunjun Liang Mingxing Chen Jing Ju Fangtian You 《Journal of Energy Chemistry》 2025年第1期146-156,共11页
Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese... Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures. 展开更多
关键词 CsPbBr3 nanocubes Post-growth mechanism Heterogeneous structure Single-particle spectroscopy Laser irradiation
在线阅读 下载PDF
Microstructure and mechanical properties of welds of AZ31B magnesium alloy produced by different gas tungsten arc welding variants
9
作者 S.Srinivasan R.Ravi Bharath +1 位作者 A.Atrens P.Bala Srinivasan 《Defence Technology(防务技术)》 2025年第2期98-110,共13页
This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode ... This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz. 展开更多
关键词 AZ31B alloy Pulse GTAW High frequency Microstructure mechanical properties PRODUCTIVITY
在线阅读 下载PDF
Gate leakage mechanisms in Al_(2)O_(3)/SiN/AlN/GaN MIS-HEMTs on Si substrates
10
作者 Hui-Lin Li Jie-Jie Zhu +5 位作者 Ling-Jie Qin Si-Mei Huang Shi-Yang Li Bo-Xuan Gao Qing Zhu Xiao-Hua Ma 《Chinese Physics B》 2025年第4期528-533,共6页
This study investigates the gate leakage mechanisms of AlN/GaN metal–insulator–semiconductor high-electronmobility transistors(MIS-HEMTs)fabricated on silicon substrate with Al_(2)O_(3)/SiN as stacked gate dielectri... This study investigates the gate leakage mechanisms of AlN/GaN metal–insulator–semiconductor high-electronmobility transistors(MIS-HEMTs)fabricated on silicon substrate with Al_(2)O_(3)/SiN as stacked gate dielectrics,analyzing behaviors across high and low temperature conditions.In the high-temperature reverse bias region(T>275 K,V_(G)<0 V),Poole–Frenkel emission(PFE)dominates at low electric fields,while trap-assisted tunneling(TAT)is the primary mechanism at medium to high electric fields.The shift from PFE to TAT as the dominant conduction mechanism is due to the increased tunneling effect of electrons as the electric field strength rises.Additionally,TAT is found to be the main gate leakage mechanism under low-temperature reverse bias(T<275 K,V_(G)<0 V).At lower temperatures,the reduction in electron energy causes the emission process to rely more on electric field forces.Furthermore,under forward bias conditions at both high and low temperatures(225 K<T<375 K,V_(G)>0 V),conduction is primarily dominated by defect-assisted tunneling(DAT). 展开更多
关键词 AlN/GaN MIS-HEMTs gate leakage mechanism trap-assisted tunneling(TAT)
在线阅读 下载PDF
Dynamic damage characteristics and control mechanism of rocks anchored by constant resistance and energy absorption material
11
作者 Bei Jiang Kunbo Wu +4 位作者 Qi Wang Yetai Wang Wenrui Wu Yaoxia Feng Yanbo Zhang 《International Journal of Mining Science and Technology》 2025年第1期57-67,共11页
With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in... With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in underground engineering.To study the dynamic damage characteristics of anchored rock and the energy absorption control mechanism of dynamic disasters,a new type of constant resistance and energy absorption(CREA)material with high strength,high elongation and high energy absorption characteristics is developed.A contrast test of rockbursts in anchored rock with different support materials is conducted.The test results show that the surface damage rates and energy release degree of anchored rock with common bolt(CB)and CREA are lower than those of unanchored rock,respectively.The total energy,average energy and maximum energy released by CREA anchored rock are 30.9%,94.3%and 84.4%lower than those of CB anchored rock.Compared with unanchored rock,the rockburst peak stress in the CREA anchored rock is increased by 39.9%,and the rockburst time is delayed by 53.2%.Based on the rockburst energy calculation model,the evolution law of rockburst peak stress and energy release is investigated.The control mechanism of CREA support units on rock dynamic failure is clarified. 展开更多
关键词 Constant resistance and energy absorption Anchored rock ROCKBURST Peak stress Control mechanism
在线阅读 下载PDF
Magnetically-responsive phase change thermal storage materials:Mechanisms,advances,and beyond
12
作者 Yan Gao Yang Li +3 位作者 Jinjie Lin Panpan Liu Xiao Chen Ge Wang 《Journal of Energy Chemistry》 2025年第2期485-510,I0010,共27页
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials... Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs. 展开更多
关键词 Phase change materials Magnetic-thermal conversion Magnetic nanoparticles Thermal energy storage Response mechanism
在线阅读 下载PDF
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
13
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
在线阅读 下载PDF
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
14
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid Structural design mechanISM ELECTROCATALYSTS
在线阅读 下载PDF
Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries
15
作者 Xingyan Li Xi Chen +13 位作者 Meng Li Haoran Wei Xuming Yang Shenghua Ye Liewu Li Jing Chen Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Xiangtong Meng Jieshan Qiu Biwei Xiao Qianling Zhang Jiangtao Hu 《Nano-Micro Letters》 2025年第8期17-48,共32页
The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of ga... The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of gas generation in SIBs,identifying sources from cathode materials,anode materials,and electrolytes,which pose safety risks like swelling,leakage,and explosions.Gases such as CO_(2),H_(2),and O_(2) primarily arise from the instability of cathode materials,side reactions between electrode and electrolyte,and electrolyte decomposition under high temperatures or voltages.Enhanced mitigation strategies,encompassing electrolyte design,buffer layer construction,and electrode material optimization,are deliberated upon.Accordingly,subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs,thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles. 展开更多
关键词 Sodium-ion batteries Gas evolution mechanism Inhibition strategies of gas generation High-performance sodium-ion battery roadmap
在线阅读 下载PDF
Spatial-temporal variation features and law of gas concentration in the fully mechanized working face under the condition of intermittent ventilation 被引量:2
16
作者 Yinpin Cao Yimin Li Zhongning Zhou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期963-969,共7页
Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition... Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition of intermittent ventilation in the tunnel.According to the actual parameters of the tunnel,a numerical calculation model was established.The spatial-temporal variation of gas concentration in the fully mechanized working face under the condition of intermittent ventilation was calculated by using the commercial package Fluent,and the correctness of the calculated results was verified by the actual monitoring data of the mine.Firstly,the gas concentration was calculated under different wind velocities at driving face in coal tunnel,and the result showed that the gas can be carried effectively by the wind when the wind velocity is about 1.8 m/s.Secondly,the distributions of wind velocity and gas concentration at driving face were studied at 1.8 m/s,and the result showed the gas concentration increased gradually with the distance close to the outlet,but the gas concentration almost kept constant at the height of driving face.Thirdly,the distribution of gas concentration was investigated with time after the ventilation was stopped and restarted,respectively.The gas concentration of test point gradually increased with the increment of downtime,when the downtime was 40 min,the gas concentration of test point 3 reached the maximum value.The gas concentration increased gradually and reached the maximum after10 min of restart,then sharply decreased and kept constant. 展开更多
关键词 Fully mechanized working FACE INTERMITTENT ventilation Gas CONCENTRATION
在线阅读 下载PDF
Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application 被引量:6
17
作者 Zhang Jiangong Miao Xiexing +1 位作者 Huang Yanli Li Meng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期349-352,共4页
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ... Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam. 展开更多
关键词 Super-thick shallow coal seam Fully mechanized top-caving mining Main roof Fracture mechanics model0
在线阅读 下载PDF
Analysis and key control technologies to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines 被引量:7
18
作者 QIN Bo-tao SUN Qing-guo +2 位作者 WANG De-ming ZHANG Lei-lin XU Qin 《Mining Science and Technology》 EI CAS 2009年第4期446-451,共6页
In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain ... In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines. 展开更多
关键词 deep mine fully mechanized caving face with large obliquity spontaneous coal combustion
在线阅读 下载PDF
Numerical simulation of dust distribution at a fully mechanized face under the isolation effect of an air curtain 被引量:19
19
作者 Wang Pengfei Feng Tao Liu Ronghua 《Mining Science and Technology》 EI CAS 2011年第1期65-69,共5页
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.... At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications. 展开更多
关键词 Fully mechanized face Air curtain Dust distribution Numerical simulation Dust-isolation efficiency
在线阅读 下载PDF
Backfilling technology and strata behaviors in fully mechanized coal mining working face 被引量:55
20
作者 Zhang Qiang Zhang Jixiong +1 位作者 Huang Yanli Ju Feng 《International Journal of Mining Science and Technology》 2012年第2期151-157,共7页
Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in... Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology. 展开更多
关键词 Fully mechanized backfilling and coalmining technologyHydraulic supportFormed backfilling scraper conveyorBackfilling technologyStrata behaviors
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部