Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been develo...Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been developed or is under development to investigate the material dynamic properties under tri-axial impact loads.For such tests,cubic specimens are needed.It is well understood that static material strength obtained from cylinder and cube specimens are different.Conversion factors are obtained and adopted in some guidelines to convert the material streng th obtained from the two types of specimens.Previous uniaxial impact tests have also demonstrated that the failure mode and the strain rate effect of cubic specimens are very different from that of cylindrical ones.However,the mechanical background of these findings is unclear.As an extension of the previous laboratory study,this study performs numerical SHPB tests of cubic and cylindrical concrete specimens subjected to uniaxial impact load with the validated numerical model.The stress states of cubic specimens in relation to its failure mode under different strain rates is analyzed and compared with cylindrical specimens.The detailed analyses of the numerical simulation results show that the lateral inertial confinement of the cylindrical specimen is higher than that of the cubic specimen under the same strain rates.For cubic specimen,the corners aremore severely damaged because of the lower lateral confinement and the occurrence of the tensile radial stress which is not observed in cylindrical specimens.These results explain why the dynamic material strengths obtained from the two types of specimens are different and are strain rate dependent.Based on the simulation results,an empirical formula of conversion factor as a function of strain rate is proposed,which supplements the traditional conversion factor for quasi-static material strength.It can be used for transforming the dynamic compressive strength from cylinders to cubes obtained from impact tests at different strain rates.展开更多
Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea...Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuu...The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).展开更多
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the...The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.展开更多
With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electr...With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.展开更多
The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1...The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.展开更多
The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highr...The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dis...A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.展开更多
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
基金Funding:This work was supported by the National Natural Science Foundation of China Igrant number 51908405 and 51938011l and Australian Research Council.
文摘Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been developed or is under development to investigate the material dynamic properties under tri-axial impact loads.For such tests,cubic specimens are needed.It is well understood that static material strength obtained from cylinder and cube specimens are different.Conversion factors are obtained and adopted in some guidelines to convert the material streng th obtained from the two types of specimens.Previous uniaxial impact tests have also demonstrated that the failure mode and the strain rate effect of cubic specimens are very different from that of cylindrical ones.However,the mechanical background of these findings is unclear.As an extension of the previous laboratory study,this study performs numerical SHPB tests of cubic and cylindrical concrete specimens subjected to uniaxial impact load with the validated numerical model.The stress states of cubic specimens in relation to its failure mode under different strain rates is analyzed and compared with cylindrical specimens.The detailed analyses of the numerical simulation results show that the lateral inertial confinement of the cylindrical specimen is higher than that of the cubic specimen under the same strain rates.For cubic specimen,the corners aremore severely damaged because of the lower lateral confinement and the occurrence of the tensile radial stress which is not observed in cylindrical specimens.These results explain why the dynamic material strengths obtained from the two types of specimens are different and are strain rate dependent.Based on the simulation results,an empirical formula of conversion factor as a function of strain rate is proposed,which supplements the traditional conversion factor for quasi-static material strength.It can be used for transforming the dynamic compressive strength from cylinders to cubes obtained from impact tests at different strain rates.
基金the Provincial Basic Research Program of China(NO.2016209A003,NO·2016602B003)
文摘Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Projects(51579239,42077240,51979280)supported by the National Natural Science Foundation of China。
文摘The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).
基金supported by the National Natural Science Foundation of China(Grant No.11872215)the National Defense Basic Scientific Research program of China(Grant No.JCKYS2019209C001)the Fundamental Strengthening Program of the Military Science and Technology Commission Technical Field Foundation(2020-JCJQ-JJ-403).
文摘The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.
基金financially supported by the“National Natural Science Foundation of China”[Grant No.52105106]the“China National Postdoctoral Program for Innovative Talents”[Grant No.BX2021126]+2 种基金the“Jiangsu Province Natural Science Foundation”[Grant No.BK20210342]the“Jiangsu Planned Projects for Postdoctoral Research Funds”[Grant No.2021K008A]the“Nanjing Municipal Human Resources and Social Security Bureau”[Grant No.MCA21121]。
文摘With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.
基金Project(2012AA03A503) supported by the National High Technology Research and Development Program of China
文摘The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.
基金Projects(52075166, 51875197) supported by the National Natural Science Foundation of ChinaProjects(2019RS2064,2019GK5043) supported by the Science and Technology Planning Project of Hunan Province,China。
文摘The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
文摘A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.