期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Mechanical and thermodynamical stability of BiVO4 polymorphs using first-principles study
1
作者 A K M Farid UI Islam Md Nurul Huda Liton +2 位作者 H M Tariqul Islam Md Al Helal Md Kamruzzaman 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期395-403,共9页
First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the gen... First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the flame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op- BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken's charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic prop- erties, it is observed that st-BiVO4 is more mechanically stable than the others, st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties, m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications. 展开更多
关键词 BIVO4 crystal structure lone pair mechanical stability
在线阅读 下载PDF
Effect and mechanism of reductive polyaniline on the stability of nitrocellulose
2
作者 Wenjiang Li Binbin Wang +5 位作者 Huimin Chen Aoao Lu Chenguang Li Qiang Li Fengqiang Nan Ping Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期217-225,共9页
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ... The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring. 展开更多
关键词 NITROCELLULOSE Green stabilizer POLYANILINE Mechanism of stability
在线阅读 下载PDF
Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNA^(Arg) from Romanomermis culicivorax
3
作者 Yan-Hui Li Zhen-Sheng Zhong Jie Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期651-659,共9页
The mechanical stability of tRNAs contributes to their biological activities.The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known.This tRNA lacks D-and T-arms,represents a stem-bulge... The mechanical stability of tRNAs contributes to their biological activities.The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known.This tRNA lacks D-and T-arms,represents a stem-bulge-stem architecture but still folds into a stable tertiary structure.Although its structure had been reported,studies on its mechanical folding and unfolding kinetic characteristics are lacking.Here,we directly measured the single-molecule mechanical folding and unfolding kinetics of the armless mt tRNAArg by using optical tweezers in different solution conditions.We revealed a two-step reversible unfolding pathway:the first and large transition corresponds to the unfolding of acceptor stem and bulge below 11 pN,and the second and small transition corresponds to the unfolding of anticodon arm at 12 pN-14 pN.Moreover,the free energy landscapes of the unfolding pathways were reconstructed.We also demonstrated that amino acid-chelated Mg^(2+)(aaCM),which mimics the intracellular solution condition,stabilizes the bulge of mitochondrial tRNAArg possibly by reducing the topological constraints or stabilizing the possible local non-canonical base pairings within the bulge region.Our study revealed the solution-dependent mechanical stability of an armless mt tRNA,which may shed light on future mt tRNA studies. 展开更多
关键词 mitochondrial tRNA mechanical stability singlemolecule manipulation amino acid-chelated Mg^(2+)
在线阅读 下载PDF
The role of microstructure and its stability in performance of wheels in heavy haul service
4
作者 Cong Qiu John Cookson Peter Mutton 《Journal of Modern Transportation》 2017年第4期261-267,共7页
Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage... Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage during their first service life.Such damage can incur heavy machining penalties or even premature scrapping of wheels.The combination of high contact stresses as well as substantial thermal loading(such as during prolonged periods of tread braking) can lead to severe plastic deformation,thermal fatigue and microstructural deterioration.For some high-strength wheel grades,the increased sensitivity to thermo-mechanical damage observed during the first service period may be attributed to the presence of a near-surface region in which the microstructure is more sensitive to these loading conditions than the underlying material.The standards applicable to wheels used in Australian heavy haul operations are based on the Association of American Railroads(AAR) specification M-107/M-208,which does not include any requirements for microstructure.The implementation of acceptance criteria for the microstructure,in particular that in the near-surface region of the wheel,may be necessary when new wheels are purchased.The stability of wheel microstructures during thermo-mechanical loading and the effects of alloying elements commonly used in wheel manufacturing are reviewed.A brief guide to improving thermal/mechanical stability of the microstructure is also provided. 展开更多
关键词 Heavy haul wheels Wheel damage MICROSTRUCTURE Thermal/mechanical stability Alloying effect
在线阅读 下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
5
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport mechanical stability
在线阅读 下载PDF
An upgraded polymeric composite with interparticle chemical bonding microstructure toward lithium-ion battery separators with enhanced safety and electrochemical performances
6
作者 Qian Zhao Ling Ma +10 位作者 Ye Xu Xiulong Wu Shuai Jiang Qiaotian Zheng Guang Hong Bin He Chen Li Wanglai Cen Wenjun Zhou Yan Meng Dan Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期402-413,共12页
A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly... A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly uniform microstructure was obtained.This polarization caused by barrier penetration was significantly restrained.Due to the Si-F bond between SiC and PVDF-HFP,the structural stability has been obviously enhanced,which could suppress the growth of lithium(Li) dendrite.Furthermore,some 3D reticulated Si nanowires are found on the surface of Li anode,which also greatly inhibit Li dendrites and result in irregular flakes of Li metal.Especially,the shrinkage of 6% SiC/PVDF-HFP at 150℃ is only 5%,which is notably lower than those of PVDF-HFP and Celgard2500.The commercial LiFePO_(4) cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g^(-1) and coulomb efficiency of 98% at 80℃.In addition,the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa,respectively.And a small deformation(1000 nm) and strong deformation recovery are obtained under a high additional load(2.3 mN).Compared with PVDF-HFP and Celgard2500,the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities.This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance. 展开更多
关键词 SiC PVDF-HFP Composite separator Thermal stability mechanical stability High safety battery
在线阅读 下载PDF
Utilizing hybrid faradaic mechanism via catalytic and surface interactions for high-performance flexible energy storage system
7
作者 Dong-Gyu Lee Hyeonggeun Choi +9 位作者 Yeonsu Park Min-Cheol Kim Jong Bae Park Suok Lee Younghyun Cho Wook Ahn A-Rang Jang Jung Inn Sohn John Hong Young-Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期541-548,I0013,共9页
Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additio... Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs. 展开更多
关键词 Energy storage system Redox mediators Faradaic electrodes Catalytic interactions mechanical stability
在线阅读 下载PDF
Exploration of the copper–niobium composite superconducting cavities for pursuing extremely high operational stability at IMP
8
作者 Shi-Chun Huang Yuan He +16 位作者 Long Peng Chun-Long Li Sheng-Xue Zhang Meng-Xin Xu Zi-Qin Yang Hao Guo Lu-Bei Liu Ping-Ran Xiong An-Dong Wu Qing-Wei Chu Xiao-Fei Niu Teng Tan Zhi-Jun Wang Jun-Hui Zhang Sheng-Hu Zhang Hong-Wei Zhao Wen-Long Zhan 《Nuclear Science and Techniques》 2025年第5期19-29,共11页
Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes dev... Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements. 展开更多
关键词 Superconducting radio-frequency cavities Cu-Nb composite mechanical and thermal stability Thermoelectrical effect Magnetic flux trapping effect
在线阅读 下载PDF
Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies 被引量:4
9
作者 Kun Wang Wenbing Ni +9 位作者 Liguang Wang Lu Gan Jing Zhao Zhengwei Wan Wei Jiang Waqar Ahmad Miaomiao Tian Min Ling Jun Chen Chengdu Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期581-600,I0015,共21页
Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),l... Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode. 展开更多
关键词 Li-metal battery Carbonate electrolyte Lithium nitrate Stabilization mechanism Dissolution principle Introduction strategy
在线阅读 下载PDF
Preparation and stabilization mechanism of carbon dots nanofluids for drag reduction 被引量:1
10
作者 Yi-Ning Wu Yuan Li +3 位作者 Meng-Jiao Cao Cai-Li Dai Long He Yu-Ping Yang 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1717-1725,共9页
During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potent... During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potential in oil fields for reducing injection pressure and augmenting oil recovery.However,carbon dots characterized of small size,high surface energy are faced with several challenges,such as self-aggregation and settling.The preparation of stably dispersed carbon dots nanofluids is the key factor to guarantee its application performance in formation.In this work,we investigated the stability of hydrophilic carbon dots(HICDs)and hydrophobic carbon dots-Tween 80(HOCDs)nanofluids.The influences of carbon dots concentration,sorts and concentration of salt ions as well as temperature on the stability of CDs were studied.The results showed that HICDs are more sensitive to sort and concentration of salt ions,while HOCDs are more sensitive to temperature.In addition,the core flooding experiments demonstrated that the pressure reduction rate of HICDs and HOCDs nanofluids can be as high as 17.88%and 26.14%,respectively.Hence,the HICDs and HOCDs nanofluids show a good application potential in the reduction of injection pressure during the development of low and ultra-low permeability oil resources. 展开更多
关键词 Carbon dots Nanofluids Drag reduction Stabilization mechanism Salt tolerance
在线阅读 下载PDF
Orientation density and workspace analysis of a parallel stabilized platform testing system 被引量:1
11
作者 江放 丁洪生 +1 位作者 付铁 董忠辉 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期302-308,共7页
An optimized workspace calculation method is proposed for parallel stabilized platform testing systems.This method refines the searched space progressively in order to approach the boundary of the workspace from both ... An optimized workspace calculation method is proposed for parallel stabilized platform testing systems.This method refines the searched space progressively in order to approach the boundary of the workspace from both the inside and the outside of it.The orientation density is defined and used as an evaluation index to calculate the orientation workspace.The algorithm of the orientation density is embedded into the computer program of the workspace calculation.Then the workspaces of the testing system are solved.In the solution,the orientation density is regarded as a discrete function of the reachable workspace.As a result,the reachable workspace and the orientation workspace are represented in the same multidimensional graphs.Finally the useful workspace of the testing system is determined based on these results.This case study indicates that the calculation efficiency is enhanced by adopting the optimized method and the practicability of workspace study is improved by proposing the orientation density. 展开更多
关键词 parallel mechanism stabilized platform workspace orientation density
在线阅读 下载PDF
Synthesis of ZnO quantum dots and their agglomeration mechanisms along with emission spectra based on ageing time and temperature
12
作者 乔泊 赵谡玲 +1 位作者 徐征 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期149-152,共4页
The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.T... The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission. 展开更多
关键词 ZnO quantum dots quantum blue shift agglomeration mechanism stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部