结合Haar型特性局部二元模式(HLBP)的图像纹理特征提取方法,提出一种新的目标跟踪算法,并将其运用到Meanshift框架中。将Visual Studio 2010和opencv2.4.9作为实验平台,将所提算法的实验结果与传统Meanshift跟踪算法、基于局部二元模式(...结合Haar型特性局部二元模式(HLBP)的图像纹理特征提取方法,提出一种新的目标跟踪算法,并将其运用到Meanshift框架中。将Visual Studio 2010和opencv2.4.9作为实验平台,将所提算法的实验结果与传统Meanshift跟踪算法、基于局部二元模式(LBP)纹理特征的Meanshift跟踪算法进行对比分析。实验结果表明,所提算法在背景复杂或背景简单的情况下都表现出了稳健而准确的跟踪特性,且在部分遮挡的情况下仍可以正确地跟踪目标。展开更多
针对视频目标跟踪算法中物体快速移动以及均值漂移算法误差累积造成的目标漂移问题,提出了一种融合YOLO(You Only Look Once)与均值漂移的目标跟踪算法。采用图像增强机制对视频帧进行预处理,在保持图像信息的同时去除光照强度的干扰;...针对视频目标跟踪算法中物体快速移动以及均值漂移算法误差累积造成的目标漂移问题,提出了一种融合YOLO(You Only Look Once)与均值漂移的目标跟踪算法。采用图像增强机制对视频帧进行预处理,在保持图像信息的同时去除光照强度的干扰;为了降低YOLO算法的计算复杂度,使用二分类器区分目标和背景进行物体的快速检测。根据目标物体的位置信息,使用均值漂移处理后续图像序列,并对目标物体进行检测更新,避免物体快速移动造成目标漂移问题,从而进行有效的检测跟踪。实验结果表明,该算法与DLT(Deep Learning Tracker)算法相比,运算效率提高了12.56%,跟踪精度提高了10.2%,能够较好地适应物体快速移动,具有较强的鲁棒性和实时性。展开更多
文摘结合Haar型特性局部二元模式(HLBP)的图像纹理特征提取方法,提出一种新的目标跟踪算法,并将其运用到Meanshift框架中。将Visual Studio 2010和opencv2.4.9作为实验平台,将所提算法的实验结果与传统Meanshift跟踪算法、基于局部二元模式(LBP)纹理特征的Meanshift跟踪算法进行对比分析。实验结果表明,所提算法在背景复杂或背景简单的情况下都表现出了稳健而准确的跟踪特性,且在部分遮挡的情况下仍可以正确地跟踪目标。