Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Co...针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Combining Based on Block Linear Minimum Mean Square Error,BLMMSE-MRC)均衡算法。该算法基于水声信道的稀疏性,利用分块线性最小均方误差算法进行预处理,将输出结果作为MRC检测的初始估计值,然后在延迟多普勒空间中估计发射信号的多径分量,并利用MRC进行合并检测。实验结果表明,与已有零填充最大比合并算法(Maximal Ratio Combining Based on Zero Padding,ZP-MRC)和零填充块线性最小均方误差算法(Block Linear Minimum Mean Square Error Based on Zero Padding,ZP-BLMMSE)相比,所提算法能快速收敛,在10-4误码率条件下,信噪比提升了2 dB以上。展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算...在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.展开更多
针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复...针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复杂度,使系统检测性能得到了明显改善.在多散射物无线通信环境下进行仿真实验,结果表明,与传统的算法相比,提案算法在保证相同信噪比,误码率没有显著变化的前提下,系统检测复杂度明显改善.理论分析证明,系统中有效天线数目越多,所提出的算法优越性越明显.展开更多
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Combining Based on Block Linear Minimum Mean Square Error,BLMMSE-MRC)均衡算法。该算法基于水声信道的稀疏性,利用分块线性最小均方误差算法进行预处理,将输出结果作为MRC检测的初始估计值,然后在延迟多普勒空间中估计发射信号的多径分量,并利用MRC进行合并检测。实验结果表明,与已有零填充最大比合并算法(Maximal Ratio Combining Based on Zero Padding,ZP-MRC)和零填充块线性最小均方误差算法(Block Linear Minimum Mean Square Error Based on Zero Padding,ZP-BLMMSE)相比,所提算法能快速收敛,在10-4误码率条件下,信噪比提升了2 dB以上。
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.
文摘针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复杂度,使系统检测性能得到了明显改善.在多散射物无线通信环境下进行仿真实验,结果表明,与传统的算法相比,提案算法在保证相同信噪比,误码率没有显著变化的前提下,系统检测复杂度明显改善.理论分析证明,系统中有效天线数目越多,所提出的算法优越性越明显.