随着电子商务的迅速发展和Web上信息的不断增长,推荐系统成为有效帮助用户做出决策的重要智能软件之一.基于评分数据的矩阵分解推荐模型被广泛研究和应用,但数据稀疏性问题影响了该模型的推荐质量.另一方面推荐系统中用户撰写的评论文...随着电子商务的迅速发展和Web上信息的不断增长,推荐系统成为有效帮助用户做出决策的重要智能软件之一.基于评分数据的矩阵分解推荐模型被广泛研究和应用,但数据稀疏性问题影响了该模型的推荐质量.另一方面推荐系统中用户撰写的评论文本可以反映用户的兴趣偏好,有研究工作提出了相应的文本分析及观点挖掘方法来缓解评分数据的稀疏性.评分矩阵分解模型与评论文本挖掘模型的融合有助于提高推荐质量,因此该文首先提出了一种融合评分数值和评论文本的推荐模型DTMF(Double Topics with Matrix Factorization),将用户评论集和商品评论集各自的潜在主题向量分别与传统矩阵分解的用户潜在因子向量和商品潜在因子向量建立正向映射关系,然后通过添加潜在主题为预测评分引导项进一步优化DTMF模型提出了DTMF+模型.在两组公开数据集上,以推荐结果的均方误差(MSE)为评估指标进行了实验验证.实验结果表明本文提出的DTMF和DTMF+两个模型整体上优于仅融入商品评论集的HFT(Hidden Factors as Topics)(item)模型,在子类数据上预测误差最大分别降低了3.68%和7.31%.该文最后探讨了有用性评论排序问题来增强推荐结果的可解释性.展开更多
针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影...针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影响。算法在接收端引入最小均方差误差排序QR分解(MMSE-SQRD)软干扰消除均衡算法,一方面避免传统基于最小均方误差(MMSE)并行软干扰消除均衡算法中矩阵求逆运算,进而降低了算法复杂度,另一方面利用信道排列,优先检测信噪比最大的传输符号进而提高检测准确性。同时通过预编码对重构信号进行预处理,进而缓解在迭代干扰消除过程中的误差传播。仿真结果表明:在4发4收场景下,误码率为10-5时,所提算法信噪比改善约0.7 d B。展开更多
文摘随着电子商务的迅速发展和Web上信息的不断增长,推荐系统成为有效帮助用户做出决策的重要智能软件之一.基于评分数据的矩阵分解推荐模型被广泛研究和应用,但数据稀疏性问题影响了该模型的推荐质量.另一方面推荐系统中用户撰写的评论文本可以反映用户的兴趣偏好,有研究工作提出了相应的文本分析及观点挖掘方法来缓解评分数据的稀疏性.评分矩阵分解模型与评论文本挖掘模型的融合有助于提高推荐质量,因此该文首先提出了一种融合评分数值和评论文本的推荐模型DTMF(Double Topics with Matrix Factorization),将用户评论集和商品评论集各自的潜在主题向量分别与传统矩阵分解的用户潜在因子向量和商品潜在因子向量建立正向映射关系,然后通过添加潜在主题为预测评分引导项进一步优化DTMF模型提出了DTMF+模型.在两组公开数据集上,以推荐结果的均方误差(MSE)为评估指标进行了实验验证.实验结果表明本文提出的DTMF和DTMF+两个模型整体上优于仅融入商品评论集的HFT(Hidden Factors as Topics)(item)模型,在子类数据上预测误差最大分别降低了3.68%和7.31%.该文最后探讨了有用性评论排序问题来增强推荐结果的可解释性.
文摘针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影响。算法在接收端引入最小均方差误差排序QR分解(MMSE-SQRD)软干扰消除均衡算法,一方面避免传统基于最小均方误差(MMSE)并行软干扰消除均衡算法中矩阵求逆运算,进而降低了算法复杂度,另一方面利用信道排列,优先检测信噪比最大的传输符号进而提高检测准确性。同时通过预编码对重构信号进行预处理,进而缓解在迭代干扰消除过程中的误差传播。仿真结果表明:在4发4收场景下,误码率为10-5时,所提算法信噪比改善约0.7 d B。