In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by ...In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by using self-similar tilings for the acceptable dilations on the Heisenberg group.展开更多
In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of ...In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of paraunitary vector filter bank theory.A method for constructing a class of compactly supported orthogonal matrix-valued wavelets is proposed by using multiresolution analysis method and matrix theory.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
Multiresolutional signal processing has been employed in image processing and computer vision to achieve improved performance that cannot be achieved using conventional signal processing techniques at only one resolut...Multiresolutional signal processing has been employed in image processing and computer vision to achieve improved performance that cannot be achieved using conventional signal processing techniques at only one resolution level [1,2,5,6] . In this paper,we have associated the thought of multiresolutional analysis with traditional Kalman filtering and proposed A new fusion algorithm based on singular Sensor and Multipale Models for maneuvering target tracking.展开更多
基金Sponsored by the NSFC (10871003, 10701008, 10726064)the Specialized Research Fund for the Doctoral Program of Higher Education of China (2007001040)
文摘In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by using self-similar tilings for the acceptable dilations on the Heisenberg group.
基金Supported by the Natural Science Foundation of Henan(0211044800)
文摘In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of paraunitary vector filter bank theory.A method for constructing a class of compactly supported orthogonal matrix-valued wavelets is proposed by using multiresolution analysis method and matrix theory.
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
文摘Multiresolutional signal processing has been employed in image processing and computer vision to achieve improved performance that cannot be achieved using conventional signal processing techniques at only one resolution level [1,2,5,6] . In this paper,we have associated the thought of multiresolutional analysis with traditional Kalman filtering and proposed A new fusion algorithm based on singular Sensor and Multipale Models for maneuvering target tracking.