Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li C...In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order diff...In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.展开更多
In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exp...In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exponent of convergence of fixed points of solutions of the above equations.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
The main purpose of this paper is to study the lower order and type of second order differential equation w"(z)-A(z)w=0,where A(z)is a polynomial.In the case of A(z)=a_dz^d,the authors prove that the lower order ...The main purpose of this paper is to study the lower order and type of second order differential equation w"(z)-A(z)w=0,where A(z)is a polynomial.In the case of A(z)=a_dz^d,the authors prove that the lower order and the type of all non-trivial solutions w of w"(z)-A(z)w=0 are equal to(d+2)/2 and(2(|a_d|)^(1/2))/(d+2)respectively.In the case of A(z)=a_dz^d+a_(d-1)z^(d-1)+…a_1z+a_0,a_d>0,a_(d-1)>0,…,a_1≥0,a_0≥0,the authors prove that the lower order of all non-trivial solutions w of w"(z)-A(z)w=0 is(d+2)/2.展开更多
In this paper, we investigate the growth of solutions of the differential equations f^((k))+ A_(k-1)(z)f^((k-1))+ ··· + A_0(z)f = 0, where A_j(z)(j = 0, ···, k-1) are entire functions.Whe...In this paper, we investigate the growth of solutions of the differential equations f^((k))+ A_(k-1)(z)f^((k-1))+ ··· + A_0(z)f = 0, where A_j(z)(j = 0, ···, k-1) are entire functions.When there exists some coefficient A_s(z)(s ∈ {1, ···, k-1}) being a nonzero solution of f''+P(z)f = 0, where P(z) is a polynomial with degree n(≥ 1) and A_0(z) satisfies σ(A_0) ≤1/2 or its Taylor expansion is Fabry gap, we obtain that every nonzero solution of such equations is of infinite order.展开更多
By meas of the Nevanlinna theory of the value distribution of meromorphic functions, this paper discusses the orders of growth of meromorphic solutions of differential equation and proves that the form of the solution...By meas of the Nevanlinna theory of the value distribution of meromorphic functions, this paper discusses the orders of growth of meromorphic solutions of differential equation and proves that the form of the solution is determined if the order are sufficiently large.展开更多
This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the ps...This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The gener...This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.展开更多
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
基金This work is supported by the National Natural Science Foundation of China(10161006)the Natural Science Foundation of Jiangxi Prov(001109)Korea Research Foundation Grant(KRF-2001-015-DP0015)
文摘In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
文摘In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.
文摘In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exponent of convergence of fixed points of solutions of the above equations.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
基金Foundation item: Supported by the NNSF of China(11201395) Supported by the Science Foundation of Educational Commission of Hubei Province(Q20132801)
文摘The main purpose of this paper is to study the lower order and type of second order differential equation w"(z)-A(z)w=0,where A(z)is a polynomial.In the case of A(z)=a_dz^d,the authors prove that the lower order and the type of all non-trivial solutions w of w"(z)-A(z)w=0 are equal to(d+2)/2 and(2(|a_d|)^(1/2))/(d+2)respectively.In the case of A(z)=a_dz^d+a_(d-1)z^(d-1)+…a_1z+a_0,a_d>0,a_(d-1)>0,…,a_1≥0,a_0≥0,the authors prove that the lower order of all non-trivial solutions w of w"(z)-A(z)w=0 is(d+2)/2.
基金Supported by the National Natural Science Foundation of China(11201195)Supported by the Natural Science Foundation of Jiangxi Province(20122BAB201012,20132BAB201008)
文摘In this paper, we investigate the growth of solutions of the differential equations f^((k))+ A_(k-1)(z)f^((k-1))+ ··· + A_0(z)f = 0, where A_j(z)(j = 0, ···, k-1) are entire functions.When there exists some coefficient A_s(z)(s ∈ {1, ···, k-1}) being a nonzero solution of f''+P(z)f = 0, where P(z) is a polynomial with degree n(≥ 1) and A_0(z) satisfies σ(A_0) ≤1/2 or its Taylor expansion is Fabry gap, we obtain that every nonzero solution of such equations is of infinite order.
基金the National Natural Science Foundation of China(10471065)the Natural Science Foundation of Guangdong Province(04010474)
文摘By meas of the Nevanlinna theory of the value distribution of meromorphic functions, this paper discusses the orders of growth of meromorphic solutions of differential equation and proves that the form of the solution is determined if the order are sufficiently large.
文摘This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
基金supported by the National Natural Science Foundation of China (Grant No 10872037)the Natural Science Foundation of Anhui Province of China (Grant No 070416226)
文摘This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.