Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of contro...Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.展开更多
This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a v...This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a valuable reference for the reliability design for the safe-arming system of an air-faced missile.展开更多
以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形...以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形成对比。其次,基于寻路理论通过建筑信息建模(building information modeling,BIM)+虚拟现实(virtual reality,VR)仿真技术,实现人与枢纽的信息交互,提取新旧导向标识方案作用下乘客寻路过程的特征参数。最后,通过对寻路实验中主客观指标分析可知,被试在新版动态导向标识方案中寻路时间、犯错误点数及迷茫点数显著降低,且新版动态导向标识方案在内容、样式及空间位置上满意度均优于旧版。结果表明:研究搭建BIM+VR的虚拟仿真平台,形成以数据驱动为导向的枢纽动态导向标识方案综合评估及优化设计方法,为枢纽动态导向标识方案设计及合理应用提供技术与理论支撑。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
基金Project(N160704004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,China
文摘Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.
文摘This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a valuable reference for the reliability design for the safe-arming system of an air-faced missile.
文摘以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形成对比。其次,基于寻路理论通过建筑信息建模(building information modeling,BIM)+虚拟现实(virtual reality,VR)仿真技术,实现人与枢纽的信息交互,提取新旧导向标识方案作用下乘客寻路过程的特征参数。最后,通过对寻路实验中主客观指标分析可知,被试在新版动态导向标识方案中寻路时间、犯错误点数及迷茫点数显著降低,且新版动态导向标识方案在内容、样式及空间位置上满意度均优于旧版。结果表明:研究搭建BIM+VR的虚拟仿真平台,形成以数据驱动为导向的枢纽动态导向标识方案综合评估及优化设计方法,为枢纽动态导向标识方案设计及合理应用提供技术与理论支撑。