Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user ...Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user behavior and relationship data, to predict user participation behavior and topic development trends. Firstly, for the complex factors of user behavior, three dynamic influence factor functions are defined, including individual, peer and community influence. These functions take timeliness into account using a time discretization method. Secondly, to determine laws of individual behavior and group behavior within a social topic, a hotspot user participation behavior prediction model is proposed and associated with the basic concepts of randora field and Markov property in information diffusion. The experimental results show that the model can not only dynamically predict the individual behavior, but also grasp the development trends of topics.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ...In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.展开更多
This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and order...This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.展开更多
定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的...定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.展开更多
基金supported by the National Key Basic Research Program(973 program)of China(No.2013CB329606)National Science Foundation of China(Grant No.61272400)+2 种基金Science and Technology Research Program of the Chongqing Municipal Education Committee(No.KJ1500425)Wen Feng Foundation of CQUPT(No.WF201403)Chongqing Graduate Research And Innovation Project(No.CYS14146)
文摘Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user behavior and relationship data, to predict user participation behavior and topic development trends. Firstly, for the complex factors of user behavior, three dynamic influence factor functions are defined, including individual, peer and community influence. These functions take timeliness into account using a time discretization method. Secondly, to determine laws of individual behavior and group behavior within a social topic, a hotspot user participation behavior prediction model is proposed and associated with the basic concepts of randora field and Markov property in information diffusion. The experimental results show that the model can not only dynamically predict the individual behavior, but also grasp the development trends of topics.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
文摘In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.
文摘This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.
文摘定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.