A marine riser,one of the most important components of offshore oil/gas transportation,needs to be designed to eliminate the risks caused by complex ocean environments,platform displacement and internal corrosion,etc....A marine riser,one of the most important components of offshore oil/gas transportation,needs to be designed to eliminate the risks caused by complex ocean environments,platform displacement and internal corrosion,etc.In this study,a new analytical-numerical assessment approach is proposed in order to quantitatively investigate the reliability of internally corroded risers under combined loads including axial tension and internal pressure.First,an analytical solution of the limit state function of intact risers under combined loads is obtained,which is further modified by the non-dimensional corrosion depth (d/ t) for the risers with a narrow and long corrosion defect.The relationship between d/t and limited internal pressure is obtained by finite element analysis and nonlinear regression.Through an advanced first-order reliability method (HL-RF) algorithm,reliability analysis is performed to obtain the failure probability,the reliability index and the sensitivity.These results are further verified by Monte-Carlo importance sampling.The proposed approach of reliability analysis provides an accurate and effective way to estimate the reliability of marine risers with narrow and long corrosion defects under combined loads.展开更多
This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonli...This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.展开更多
基金the National Basic Research Program of China(973 Program,Grant No.2011CB013702)the Beijing Natural Science Foundation(Grant No.KZ201210017017)
文摘A marine riser,one of the most important components of offshore oil/gas transportation,needs to be designed to eliminate the risks caused by complex ocean environments,platform displacement and internal corrosion,etc.In this study,a new analytical-numerical assessment approach is proposed in order to quantitatively investigate the reliability of internally corroded risers under combined loads including axial tension and internal pressure.First,an analytical solution of the limit state function of intact risers under combined loads is obtained,which is further modified by the non-dimensional corrosion depth (d/ t) for the risers with a narrow and long corrosion defect.The relationship between d/t and limited internal pressure is obtained by finite element analysis and nonlinear regression.Through an advanced first-order reliability method (HL-RF) algorithm,reliability analysis is performed to obtain the failure probability,the reliability index and the sensitivity.These results are further verified by Monte-Carlo importance sampling.The proposed approach of reliability analysis provides an accurate and effective way to estimate the reliability of marine risers with narrow and long corrosion defects under combined loads.
文摘This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.