A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading...Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se...A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.展开更多
This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities...This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
With the development of the monitoring technology,it is more and more common that the system is continuously monitored.Therefore,the research on the maintenance optimization of the continuously monitored deterioration...With the development of the monitoring technology,it is more and more common that the system is continuously monitored.Therefore,the research on the maintenance optimization of the continuously monitored deterioration system is important.The deterioration process of the discussed system is described by a Gamma process.The predictive maintenance is considered to be imperfect and formulated.The expected interval of two continuous preventive maintenances is derived.Then,the maintenance optimization model of the continuously monitored deterioration system is presented.In the model,the minimization of the expected operational cost per unit time and the maximization of the system availability are the optimization objectives.The improved ideal point method with the normalized objective functions is employed to solve the proposed model.The validity and sensitivity of the proposed multiobjective maintenance optimization model are analyzed by a numerical example.展开更多
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fas...The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.展开更多
Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolut...Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.展开更多
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金supported by the National Natural Science Foundation of China(61873122)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
文摘A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.
基金supported by the Naitonal Natural Science Foundation of China(71701038)China Ministry of Education Humanities and Social Sciences Research Youth Fund Project(16YJC630174)+2 种基金the Natural Science Foundation of Hebei Province(G2019501074)the Fundamental Research Funds for the Central Universities(N2123019)the Postgraduate Funding Project of PLA(JY2020B085).
文摘This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金supported by the Fundamental Research Funds for the Central Universities (N090303005)Key National Science and Technology Special Project (2010ZX04014-014)
文摘With the development of the monitoring technology,it is more and more common that the system is continuously monitored.Therefore,the research on the maintenance optimization of the continuously monitored deterioration system is important.The deterioration process of the discussed system is described by a Gamma process.The predictive maintenance is considered to be imperfect and formulated.The expected interval of two continuous preventive maintenances is derived.Then,the maintenance optimization model of the continuously monitored deterioration system is presented.In the model,the minimization of the expected operational cost per unit time and the maximization of the system availability are the optimization objectives.The improved ideal point method with the normalized objective functions is employed to solve the proposed model.The validity and sensitivity of the proposed multiobjective maintenance optimization model are analyzed by a numerical example.
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.
文摘The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.
文摘Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.