期刊文献+
共找到230篇文章
< 1 2 12 >
每页显示 20 50 100
Novel ensemble learning based on multiple section distribution in distributed environment
1
作者 Fang Min 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期377-380,共4页
Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense... Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method. 展开更多
关键词 distributed environment ensemble learning multiple classifiers combination.
在线阅读 下载PDF
基于特征选择的集成极限学习机故障辨识方法
2
作者 马驰 赵荣珍 +1 位作者 原健辉 郑玉巧 《兰州理工大学学报》 北大核心 2025年第2期44-50,共7页
针对传统极限学习机神经网络在处理复杂数据时无法获得最佳分类性能的问题,提出了基于特征选择的集成极限学习机故障辨识方法.首先,选择合适的尺度对振动信号进行粗粒化分解,在不同尺度上计算振动信号的模糊近似熵,并构成高维数据集.然... 针对传统极限学习机神经网络在处理复杂数据时无法获得最佳分类性能的问题,提出了基于特征选择的集成极限学习机故障辨识方法.首先,选择合适的尺度对振动信号进行粗粒化分解,在不同尺度上计算振动信号的模糊近似熵,并构成高维数据集.然后,通过邻域粗糙集算法对高维数据集进行属性约简,并且采用不同的邻域半径对数据集进行约简,从而产生不同的特征子集,同时将每个特征子集划分为训练集和测试集,进而输入极限学习机进行模式识别.最后,整合多个极限学习机的预测结果,依据相对多数投票法决定最终的辨识结果.实验证明,相比传统极限学习机,该方法可以提高滚动轴承故障类别的辨识精度,使故障分类结果更准确、更有效. 展开更多
关键词 模糊近似熵 特征选择 分类器集成 极限学习机
在线阅读 下载PDF
基于多模态特征集成算法的CID患者识别研究
3
作者 周文俊 欧静 +1 位作者 龚亮 彭博 《计算机应用与软件》 北大核心 2025年第4期142-149,共8页
目前,慢性失眠障碍(CID)患者数量逐年增加,及时诊断能有效避免CID患者症状加重。利用磁共振成像(MRI)技术结合分类算法可对CID患者进行识别。传统MRI数据分类算法基于单模态特征SVM算法进行,但该算法对CID患者数据分类效果不佳,因此,提... 目前,慢性失眠障碍(CID)患者数量逐年增加,及时诊断能有效避免CID患者症状加重。利用磁共振成像(MRI)技术结合分类算法可对CID患者进行识别。传统MRI数据分类算法基于单模态特征SVM算法进行,但该算法对CID患者数据分类效果不佳,因此,提出一种多模态特征集成算法进行CID患者识别以取得更好效果。多模态特征集成算法基于静息态功能MRI技术映射多模态特征,利用集成算法进行分类对比实验。实验结果显示,相较于传统MRI分类算法,多模态特征集成算法对CID患者数据分类效果更好,能有效识别CID患者,进而进行相关医疗辅助诊断工作。 展开更多
关键词 慢性失眠 患者分类 MRI 多模态特征 集成分类器
在线阅读 下载PDF
基于HJ-2 CCD影像的耕地破碎区油菜种植信息提取
4
作者 张萌 徐祥 +1 位作者 王状 王杰 《河南农业科学》 北大核心 2025年第7期170-180,共11页
由于耕地破碎区农田景观格局多样、作物种植结构复杂、地块零散且不规整,使用中低空间分辨率遥感影像容易出现严重的混合像元现象,难以获得高精度的农作物种植信息。高空间分辨率遥感影像的普及使用改善了这种情况,提高了耕地破碎区的... 由于耕地破碎区农田景观格局多样、作物种植结构复杂、地块零散且不规整,使用中低空间分辨率遥感影像容易出现严重的混合像元现象,难以获得高精度的农作物种植信息。高空间分辨率遥感影像的普及使用改善了这种情况,提高了耕地破碎区的农作物识别精度,但目前针对油菜的高空间分辨率遥感影像种植提取研究仍较少,已有识别方法存在数据处理量大、过程复杂的问题。针对此,以安徽省枞阳县为研究区,基于空间分辨率与光谱波段双提升的HJ-2 CCD影像,提出一种利用油菜开花期的关键物候期影像植被指数构建衍生光谱特征集、联合Bagging集成策略和最小马氏距离分类器的快速有效的耕地破碎区油菜识别模型。结果表明,与RAW(原生光谱波段)+SVM(支持向量机)、RAW+RF(随机森林)、RAW+Bagging-MMDC(Bagging集成最小马氏距离分类器)、VI(植被指数特征集)+SVM、VI+RF 5种其他典型模型方法相比,所提出模型VI+Bagging-MMDC的地物分类和油菜提取效果最好,总体精度、Kappa系数、油菜的用户精度、油菜的生产者精度分别为94.27%、0.93、98.59%、97.21%;与统计数据相比,所提出模型的总面积精度达到92.80%,相对误差为7.20%,种植分布与真实油菜地块吻合度高,可以满足实际应用需求;红边信息的引入使总体精度、Kappa系数、油菜的用户精度分别提高2.40百分点、0.03、4.94百分点。油菜开花期关键性植被指数、Bagging集成策略、最小马氏距离分类器以及红边信息的结合使用可以有效提高耕地破碎区作物的提取精度。 展开更多
关键词 油菜 种植信息提取 集成学习 最小马氏距离分类器 植被指数 红边信息 环境二号卫星 耕地破碎区
在线阅读 下载PDF
基于ER Rule的多分类器汽车评论情感分类研究 被引量:1
5
作者 周谧 周雅婧 +1 位作者 贺洋 方必和 《运筹与管理》 CSSCI CSCD 北大核心 2024年第5期161-168,共8页
该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同... 该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同分类器进行文本情感极性分析,并考虑各分类器的权重和可靠度。最后,爬取汽车网站上的评论数据对上述方法进行测试,并用公开的中文酒店评论语料数据进行了验证,结果表明该方法能够有效集成不同分类器的优点,与传统机器学习分类算法相比,其结果在Recall,F1值和Accuracy三个指标上得到了提高,与目前流行的深度学习算法和集成学习算法相比,其结果总体占优。 展开更多
关键词 证据推理规则 多分类器融合 TFIDF权重 深度学习算法 集成学习算法
在线阅读 下载PDF
面向集成学习的流形近邻样本包络与分层多类型变换算法
6
作者 颜芳 马洁 +3 位作者 李勇明 王品 覃剑 刘承宇 《电子学报》 CSCD 北大核心 2024年第12期4125-4141,共17页
集成学习是机器学习领域的重要分支和研究热点.目前集成学习算法的主要范式是:基于原样本集得到多个样本子集,分别训练基分类器,集成基分类器结果 .这种做法的主要问题在于:由于各子集均来自原样本集,因此,各子集之间的多样性显著降低.... 集成学习是机器学习领域的重要分支和研究热点.目前集成学习算法的主要范式是:基于原样本集得到多个样本子集,分别训练基分类器,集成基分类器结果 .这种做法的主要问题在于:由于各子集均来自原样本集,因此,各子集之间的多样性显著降低.尤其当原样本集数据尺寸小、采样比率大、不平衡程度高时,这一问题非常严重.此外,当原样本集可分度低时,重采样获得的样本子集的可分度改善也有限.为解决这个问题,本文提出面向集成学习的流形近邻样本包络与分层多类型变换算法,旨在通过包络化机制和多类型样本变换将原样本集转化为具有差异性的分层包络样本集,从而提高样本子集的多样性和可分度.首先设计流形近邻样本包络化机制,将原样本转化为样本包络.然后对样本包络进行多类型样本变换,重构生成分层包络样本.接着,设计基于联合结构域适应的层间一致性保持机制,保持变换前后样本分布的一致性,提高包络样本对原样本的高表征能力.此后,针对各层包络样本集,分别进行特征降维和训练基分类器.最后,采用二维决策融合机制得到最终分类结果.实验部分采用了十余个数据集和多个相关算法用于验证.结果表明,相较于原样本集,本文算法构造的分层包络样本集提高了样本子集的多样性,改进了集成学习性能,准确率最高提升了18.56%.与相关集成学习算法相比,准确率最高提升了7.56%.本文工作为现有集成学习算法改进研究提供了新思路,将直接基于原样本的集成学习范式转化为基于分层包络样本的集成学习新范式,具有参考价值. 展开更多
关键词 集成学习 包络学习 样本变换 近邻样本包络化 域适应 分类器集成
在线阅读 下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
7
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器链 集成学习
在线阅读 下载PDF
基于交互式多特征融合算法的药物靶标预测 被引量:1
8
作者 高浩田 李东喜 +1 位作者 陈泽华 赵芊 《太原理工大学学报》 CAS 北大核心 2024年第4期751-758,共8页
【目的】药物-靶标相互作用预测在药物重定位和药物开发方面起着至关重要的作用。【方法】提出了一种基于冗余度-相关性和交互作用结合的多特征融合算法RCI(redundancy-correlation and interaction),并结合堆叠集成分类器搭建药物靶标... 【目的】药物-靶标相互作用预测在药物重定位和药物开发方面起着至关重要的作用。【方法】提出了一种基于冗余度-相关性和交互作用结合的多特征融合算法RCI(redundancy-correlation and interaction),并结合堆叠集成分类器搭建药物靶标预测模型。首先,提取药物和靶标的高维特征进行多特征融合,使用RCI算法构建非冗余的且具有相关性的交互特征子集。然后,将交互特征子集输入到由多个基学习器构成的堆叠集成分类器中进行训练。最后,对两个基准药物靶标网络进行了预测。【结果】实验结果表明,所搭建模型的准确度ACC值和AUC值均优于现有基线方法,说明所提算法的有效性。 展开更多
关键词 药物-靶标相互作用 多特征融合 特征选择 堆叠集成分类器 机器学习
在线阅读 下载PDF
基于混合多样性生成与修剪的集成单类分类算法 被引量:9
9
作者 刘家辰 苗启广 +2 位作者 曹莹 宋建锋 权义宁 《电子与信息学报》 EI CSCD 北大核心 2015年第2期386-393,共8页
针对传统集成学习方法直接应用于单类分类器效果不理想的问题,该文首先证明了集成学习方法能够提升单类分类器的性能,同时证明了若基分类器集不经选择会导致集成后性能下降;接着指出了经典集成方法直接应用于单类分类器集成时存在基分... 针对传统集成学习方法直接应用于单类分类器效果不理想的问题,该文首先证明了集成学习方法能够提升单类分类器的性能,同时证明了若基分类器集不经选择会导致集成后性能下降;接着指出了经典集成方法直接应用于单类分类器集成时存在基分类器多样性严重不足的问题,并提出了一种能够提高多样性的基单类分类器混合生成策略;最后从集成损失构成的角度拆分集成单类分类器的损失函数,针对性地构造了集成单类分类器修剪策略并提出一种基于混合多样性生成和修剪的单类分类器集成算法,简称为PHD-EOC。在UCI标准数据集和恶意程序行为检测数据集上的实验结果表明,PHD-EOC算法兼顾多样性与单类分类性能,在各种单类分类器评价指标上均较经典集成学习方法有更好的表现,并降低了决策阶段的时间复杂度。 展开更多
关键词 机器学习 单类分类 集成单类分类 分类器多样性 集成修剪 集成学习
在线阅读 下载PDF
基于差异性的分类器集成:有效性分析及优化集成 被引量:19
10
作者 杨春 殷绪成 +2 位作者 郝红卫 闫琰 王志彬 《自动化学报》 EI CSCD 北大核心 2014年第4期660-674,共15页
差异性是分类器集成具有高泛化能力的必要条件.然而,目前对差异性度量、有效性及分类器优化集成都没有统一的分析和处理方法.针对上述问题,本文一方面从差异性度量方法、差异性度量有效性分析和相应的分类器优化集成技术三个角度,全面... 差异性是分类器集成具有高泛化能力的必要条件.然而,目前对差异性度量、有效性及分类器优化集成都没有统一的分析和处理方法.针对上述问题,本文一方面从差异性度量方法、差异性度量有效性分析和相应的分类器优化集成技术三个角度,全面总结与分析了基于差异性的分类器集成.同时,本文还通过向量空间模型形象地论证了差异性度量的有效性.另一方面,本文针对多种典型的基于差异性的分类器集成技术(Bagging,boosting GA-based,quadratic programming(QP)、semi-definite programming(SDP)、regularized selective ensemble(RSE))在UCI数据库和USPS数据库上进行了对比实验与性能分析,并对如何选择差异性度量方法和具体的优化集成技术给出了可行性建议. 展开更多
关键词 分类器集成 差异性 有效性分析 优化
在线阅读 下载PDF
一种不平衡数据流集成分类模型 被引量:24
11
作者 欧阳震诤 罗建书 +1 位作者 胡东敏 吴泉源 《电子学报》 EI CAS CSCD 北大核心 2010年第1期184-189,共6页
针对不平衡数据流的分类问题,结合基于权重的集成分类器与抽样技术,本文提出了一种处理不平衡数据流集成分类器模型.理论分析与实验验证表明,该集成分类器具有更低的计算复杂度,更能适应存在概念漂移的不平衡数据流挖掘分类,其整体分类... 针对不平衡数据流的分类问题,结合基于权重的集成分类器与抽样技术,本文提出了一种处理不平衡数据流集成分类器模型.理论分析与实验验证表明,该集成分类器具有更低的计算复杂度,更能适应存在概念漂移的不平衡数据流挖掘分类,其整体分类性能优于基于权重的集成分类器模型,能明显提升少数类的分类精度. 展开更多
关键词 分类 集成分类器 不平衡数据流 概念漂移
在线阅读 下载PDF
利用0-1矩阵分解集成的极化SAR图像分类 被引量:8
12
作者 陈博 王爽 +3 位作者 焦李成 刘芳 毛莎莎 张爽 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1495-1501,共7页
全极化合成孔径雷达(Pol SAR)图像蕴含更丰富的散射信息,具有更多的可用特征。如何使用这些特征是极化SAR图像分类中非常重要的一步,但是目前尚未对此提出非常明确的准则。为了能够有效地解决上述问题,该文提出一种基于特征加权集成的极... 全极化合成孔径雷达(Pol SAR)图像蕴含更丰富的散射信息,具有更多的可用特征。如何使用这些特征是极化SAR图像分类中非常重要的一步,但是目前尚未对此提出非常明确的准则。为了能够有效地解决上述问题,该文提出一种基于特征加权集成的极化SAR图像分类算法。该算法采用0-1矩阵分解集成方法对包括不同特征的数据集进行学习获得相应加权系数,并通过对每个特征集获得的预测结果进行加权集成来提高极化SAR图像分类性能。首先,输入极化SAR数据,获得极化特征作为原始特征集,并对其进行随机抽取获得不同的特征子集;然后,使用0-1矩阵集成算法得到每个特征值相对应的加权系数;最后,通过对各个特征子集的预测结果进行集成得到最终极化SAR图像分类结果。实测L波段和C波段极化数据的实验结果表明,该算法可以有效地提高极化SAR图像分类的准确度。 展开更多
关键词 极化合成孔径雷达 监督图像分类 集成学习 分类器集成
在线阅读 下载PDF
多分类器集成的汉语词义消歧研究 被引量:14
13
作者 吴云芳 王淼 +1 位作者 金澎 俞士汶 《计算机研究与发展》 EI CSCD 北大核心 2008年第8期1354-1361,共8页
词义消歧长期以来一直是自然语言处理中的热点和难题,集成方法被认为是机器学习研究的四大趋势之一.系统研究了9种集成学习方法在汉语词义消歧中的应用.9种集成方法分别是乘法规则、均值、最大值、最小值、多数投票、序列投票、加权投... 词义消歧长期以来一直是自然语言处理中的热点和难题,集成方法被认为是机器学习研究的四大趋势之一.系统研究了9种集成学习方法在汉语词义消歧中的应用.9种集成方法分别是乘法规则、均值、最大值、最小值、多数投票、序列投票、加权投票、概率加权和单分类器融合,其中乘法规则、均值、最大值3种集成方法还未曾应用于词义消歧.选取支持向量机模型、朴素贝叶斯和决策树作为3个单分类器.在两个不同的数据集上进行了实验,其一是选自现代汉语语义标注语料库的18个多义词,其二是国际语义评测SemEval-2007的中英文对译选择词消歧任务.实验结果显示,首次在词义消歧中引入应用的3种集成方法乘法、均值、最大值有良好的性能表现,3种方法的消歧准确率均高于最佳单分类器SVM,而且优于其他6种集成方法. 展开更多
关键词 词义消歧 多分类器集成 均值 最大值
在线阅读 下载PDF
分类器集成差异性研究 被引量:10
14
作者 张宏达 王晓丹 +1 位作者 韩钧 徐海龙 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期3007-3012,共6页
差异性是集成学习中的重要概念,对差异性的研究在集成学习领域中占有基础性地位。从差异度量方法、差异度与分类器集成性能的关系以及差异度在集成优化中的应用三个方面对当前研究进展进行分析。深入分析了现有工作,对存在的问题给出一... 差异性是集成学习中的重要概念,对差异性的研究在集成学习领域中占有基础性地位。从差异度量方法、差异度与分类器集成性能的关系以及差异度在集成优化中的应用三个方面对当前研究进展进行分析。深入分析了现有工作,对存在的问题给出一些解决思路,建议不能为了差异性以较大的基分类器精度损失为代价;不能为了引入差异性而偏离原来的分类问题。 展开更多
关键词 分类器集成 差异性 泛化性能 优化
在线阅读 下载PDF
基于随机化属性选择和邻域覆盖约简的集成学习 被引量:27
15
作者 朱鹏飞 胡清华 于达仁 《电子学报》 EI CAS CSCD 北大核心 2012年第2期273-279,共7页
提高分类模型的分类精度和可靠性是分类建模追求的目标.针对目前规则学习方法应用于分类时稳定性差以及分类精度低的问题,本文通过随机化邻域属性约简,搜索一组分类精度较高的属性子集,在不同的属性子集上采用邻域覆盖约简方法学习分类... 提高分类模型的分类精度和可靠性是分类建模追求的目标.针对目前规则学习方法应用于分类时稳定性差以及分类精度低的问题,本文通过随机化邻域属性约简,搜索一组分类精度较高的属性子集,在不同的属性子集上采用邻域覆盖约简方法学习分类规则,得到多个规则集.最后通过简单投票融合不同规则集上的分类结果获得对象的类别.实验表明,基于随机化邻域约简的集成学习方法分类性能优于或与其它相关的分类器相当,并且在噪声扰动下具有更强的鲁棒性. 展开更多
关键词 邻域 随机约简 集成学习 规则学习 分类器
在线阅读 下载PDF
一种面向非平衡数据集分类问题的组合选择方法 被引量:7
16
作者 职为梅 郭华平 +1 位作者 张银峰 范明 《小型微型计算机系统》 CSCD 北大核心 2014年第4期770-775,共6页
由于类分布的不平衡性,很多传统的分类方法在非平衡数据集上的分类效果不好.与传统的方法不同,论文从组合选择的角度考虑不平衡类学习问题,提出了一种基于实例的组合选择方法 CBES,提升组合分类器在不平衡数据集上的分类性能.CBES考察... 由于类分布的不平衡性,很多传统的分类方法在非平衡数据集上的分类效果不好.与传统的方法不同,论文从组合选择的角度考虑不平衡类学习问题,提出了一种基于实例的组合选择方法 CBES,提升组合分类器在不平衡数据集上的分类性能.CBES考察类标号未知的样本的k近邻,并以此为选择集,从分类器库中选择一个最优或次优的子组合分类器来预测未知样本的类标号.由于考虑了待分类样本的局部特征,更关注稀有类,因此CBES能够更好地对非平衡数据集进行分类.实验结果表明,本文的方法能够显著地降低模型的复杂度,有效地提高了非平衡数据集上的分类性能. 展开更多
关键词 非平衡数据集 组合分类器 组合选择 K近邻 基分类器
在线阅读 下载PDF
集合预报产品在台风麦莎预报中的应用 被引量:17
17
作者 刘家峻 张立凤 +2 位作者 关吉平 李荔珊 费增坪 《气象》 CSCD 北大核心 2010年第5期21-31,共11页
为了提高集合预报效果,利用T106L19全球谱模式和增长模繁殖法对台风麦莎制作了13个成员的集合预报,并对其结果进行集合预报产品解释应用研究。首先在离散距离分簇法中,引入方差分析的方法确定分簇基础,然后对集合预报的形势场进行了分簇... 为了提高集合预报效果,利用T106L19全球谱模式和增长模繁殖法对台风麦莎制作了13个成员的集合预报,并对其结果进行集合预报产品解释应用研究。首先在离散距离分簇法中,引入方差分析的方法确定分簇基础,然后对集合预报的形势场进行了分簇,相对于以往采用96小时样本为分簇基础进行分簇的方法,分簇效果提高明显,分簇结果能给出台风移动的几种可能路径及其概率;其次对要素随时间的演变利用系统聚类法进行了分类,根据分簇平均图可以确定几个可能的台风登陆地点,制作了这些特殊点要素分类烟羽图,通过分析要素随时间的演变特征,提高对台风登陆地点和时间的预报精度;最后制作了盒须图,通过盒须图中数据组主体以外的数据点,确认出值得注意的一些特殊集合成员的预报结果,减少了小概率事件的漏报率。研究结果表明,将方差分析引入离散距离分簇法,要素烟羽聚类法以及盒须图的应用有利于提高和改善集合预报效果,集合预报产品解释应用效果得到改进。 展开更多
关键词 集合预报 台风 分簇 烟羽聚类图 盒须图
在线阅读 下载PDF
利用旋转森林变换的异构多分类器集成算法 被引量:15
18
作者 毛莎莎 熊霖 +2 位作者 焦李成 张爽 陈博 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期48-53,共6页
为了增强集成系统中各分类器之间的差异性,提出了一种使用旋转森林策略集成两种不同模型分类器的方法,即异构多分类器集成学习算法.首先采用旋转森林对原始样本集进行变换划分,获得新的样本集;然后通过特定比例选择分类精度高的支撑矢... 为了增强集成系统中各分类器之间的差异性,提出了一种使用旋转森林策略集成两种不同模型分类器的方法,即异构多分类器集成学习算法.首先采用旋转森林对原始样本集进行变换划分,获得新的样本集;然后通过特定比例选择分类精度高的支撑矢量机或分类速度较快的核匹配追踪作为基本的集成个体分类器,并对新样本集进行分类,获得其预测标记;最后结合两种模型下的预测标记.该算法通过结合两种不同分类器模型,实现了精度和速度互补,将二者混合集成后改善了集成系统泛化误差,相比单个模型集成提高了系统分类性能.对UCI数据集和遥感图像数据集的仿真实验结果表明,文中算法相比单一分类器集成缩短了运行时间,同时提高了系统的分类准确率. 展开更多
关键词 集成分类器 旋转森林 支撑矢量机 核匹配追踪
在线阅读 下载PDF
银行客户信用评估动态分类器集成选择模型 被引量:30
19
作者 肖进 刘敦虎 +1 位作者 顾新 汪寿阳 《管理科学学报》 CSSCI 北大核心 2015年第3期114-126,共13页
现实的银行客户信用评估数据常包含大量的缺失值,这在很大程度上影响了信用评估模型的性能.针对已有模型的不足,提出了面向缺失数据的动态分类器集成选择模型DCESM.该模型充分利用数据集中所包含的已知信息,在训练信用评估模型之前不需... 现实的银行客户信用评估数据常包含大量的缺失值,这在很大程度上影响了信用评估模型的性能.针对已有模型的不足,提出了面向缺失数据的动态分类器集成选择模型DCESM.该模型充分利用数据集中所包含的已知信息,在训练信用评估模型之前不需要事先对缺失数据进行预处理,从而减少了对数据缺失机制假设以及数据分布模型的依赖.从UCI数据库中选择两个银行信用卡业务信用评估数据集进行实证分析,结果表明,与4种常用的基于插补法的多分类器集成模型以及1种直接面向缺失数据建模的集成模型相比,DCESM模型能够取得更好的客户信用评估性能. 展开更多
关键词 信用评估 缺失数据 动态分类器集成选择
在线阅读 下载PDF
基于证据理论的多类分类支持向量机集成 被引量:29
20
作者 李烨 蔡云泽 +1 位作者 尹汝泼 许晓鸣 《计算机研究与发展》 EI CSCD 北大核心 2008年第4期571-578,共8页
针对多类分类问题,研究支持向量机集成中的分类器组合架构与方法.分析已有的多类级和两类级支持向量机集成架构的不足后,提出两层的集成架构.在此基础上,研究基于证据理论的支持向量机度量层输出信息融合方法,针对一对多与一对一两种多... 针对多类分类问题,研究支持向量机集成中的分类器组合架构与方法.分析已有的多类级和两类级支持向量机集成架构的不足后,提出两层的集成架构.在此基础上,研究基于证据理论的支持向量机度量层输出信息融合方法,针对一对多与一对一两种多类扩展策略,分别定义基本概率分配函数,并根据证据冲突程度采用不同的证据组合规则.在一对多策略下,采用经典的Dempster规则;在一对一策略下则提出一条新的规则,以组合冲突严重的证据.实验表明,两层架构优于多类级架构,证据理论方法能有效地利用两类支持向量机的度量层输出信息,取得了满意的结果. 展开更多
关键词 支持向量机 集成 分类器组合 多类分类 证据理论
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部