A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,wh...A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很...研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很好地满足ForCES需求(RFC 3654)。展开更多
Making use of basic equation of large deformation of circular membrane under the concentrated force and its boundary conditions and Hencky transformation, the problems of nonlinear boundary condition were solved. The ...Making use of basic equation of large deformation of circular membrane under the concentrated force and its boundary conditions and Hencky transformation, the problems of nonlinear boundary condition were solved. The Hencky transformation was extended and a exact solution of large deformation of circular membrane under the concentrated force has been obtained.展开更多
基金supported by the National Natural Science Foundation of China(51777053,52077052)。
文摘A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
文摘研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很好地满足ForCES需求(RFC 3654)。
文摘Making use of basic equation of large deformation of circular membrane under the concentrated force and its boundary conditions and Hencky transformation, the problems of nonlinear boundary condition were solved. The Hencky transformation was extended and a exact solution of large deformation of circular membrane under the concentrated force has been obtained.