The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving te...The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving technique. It takes the system timing and energy constraints into account. In order to adapt the dynamic task load, the algorithm considers both the priorities and deadlines of tasks. The simulation results demonstrate that compared with the conventional adaptive dwell scheduling algorithm, the proposed one can improve the task drop rate and system resource utility effectively.展开更多
An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiti...An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.展开更多
According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and ...According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.展开更多
To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on sprea...To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference.展开更多
文摘The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving technique. It takes the system timing and energy constraints into account. In order to adapt the dynamic task load, the algorithm considers both the priorities and deadlines of tasks. The simulation results demonstrate that compared with the conventional adaptive dwell scheduling algorithm, the proposed one can improve the task drop rate and system resource utility effectively.
文摘An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.
基金supported by the National Natural Science Foundation of China(6110117161032010)
文摘According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.
基金the National "863" High Technology Research Program of China (2005AA123320)Universities Natural Science Research Project of Jiangsu Province (05KJB510101).
文摘To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference.