期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
Vibration properties of Paulownia wood for Ruan sound quality using machine learning methods
1
作者 Yang Yang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期216-222,共7页
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba... As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards. 展开更多
关键词 Sound quality Wood vibration performance Paulownia wood machine learning methods
在线阅读 下载PDF
Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods 被引量:6
2
作者 Chao Chen Danyang Liu +4 位作者 Siyan Deng Lixiang Zhong Serene Hay Yee Chan Shuzhou Li Huey Hoon Hng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期364-375,I0009,共13页
A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo... A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science. 展开更多
关键词 Small database machine learning Energetic materials screening Spatial matrix featurization method Crystal density Formation enthalpy n-Body interactions
在线阅读 下载PDF
A liquid loading prediction method of gas pipeline based on machine learning 被引量:5
3
作者 Bing-Yuan Hong Sheng-Nan Liu +5 位作者 Xiao-Ping Li Di Fan Shuai-Peng Ji Si-Hang Chen Cui-Cui Li Jing Gong 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3004-3015,共12页
The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mech... The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance. 展开更多
关键词 Liquid loading Data-driven method machine learning Gas pipeline Multiphase flow
在线阅读 下载PDF
A systematic machine learning method for reservoir identification and production prediction 被引量:4
4
作者 Wei Liu Zhangxin Chen +1 位作者 Yuan Hu Liuyang Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期295-308,共14页
Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been appl... Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness. 展开更多
关键词 Reservoir identification Production prediction machine learning Ensemble method
在线阅读 下载PDF
Machine Learning to Instruct Single Crystal Growth by Flux Method 被引量:1
5
作者 Tang-Shi Yao Cen-Yao Tang +11 位作者 Meng Yang Ke-Jia Zhu Da-Yu Yan Chang-Jiang Yi Zi-Li Feng He-Chang Lei Cheng-He Li Le Wang Lei Wang You-Guo Shi Yu-Jie Sun Hong Ding 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第6期98-102,共5页
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially ... Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes. 展开更多
关键词 machine learning Instruct Single CRYSTAL GROWTH FLUX method
在线阅读 下载PDF
Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure 被引量:3
6
作者 Jie Cai Xiaoli Jiang +2 位作者 Yazhou Yang Gabriel Lodewijks Minchang Wang 《Journal of Marine Science and Application》 CSCD 2022年第2期115-132,共18页
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p... A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines. 展开更多
关键词 Pipelines CORROSION Burst strength Internal pressure Data-driven method machine learning
在线阅读 下载PDF
基于机器学习的成本法在专利价值评估中的应用研究--以“新能源汽车”为例 被引量:5
7
作者 冉从敬 李旺 +1 位作者 胡启彪 黄文俊 《现代情报》 CSSCI 北大核心 2024年第5期140-152,共13页
[目的/意义]构建基于机器学习的成本法专利价值评估方法,快速识别海量专利的实际成本,并预测其价值区间,在为专利价值评估提供新研究思路的同时,也为专利转移转化定价提供了参考借鉴。[方法/过程]通过Innography数据库与Incopat数据库... [目的/意义]构建基于机器学习的成本法专利价值评估方法,快速识别海量专利的实际成本,并预测其价值区间,在为专利价值评估提供新研究思路的同时,也为专利转移转化定价提供了参考借鉴。[方法/过程]通过Innography数据库与Incopat数据库下载“新能源汽车”领域多指标专利数据,提取专利成本影响因素与专利价值影响因素,并形成专利数据训练集与专利数据预测集;构建AutoGluon机器学习分类算法,将包含成本数据的Innography专利数据训练集导入模型进行训练,并将训练好的模型对Incopat专利数据预测集进行成本预测;最后使用成本法并结合本研究提出的专利价值指数对预测结果进行计算,估算其价格区间。[结果/结论]通过实证分析与结果验证可知,本研究构建的基于机器学习的成本法专利价值评估方法在预测专利价值区间中具备一定有效性,为促进专利价值评估研究深化及专利转移转化定价实践发展提供了参考。 展开更多
关键词 机器学习 成本法 价格预估 专利价值
在线阅读 下载PDF
基于WKNN和KELM-GPR的虚拟电厂交互模型构建方法
8
作者 郝瑞鑫 樊艳芳 +2 位作者 侯俊杰 白雪岩 刘雨佳 《太阳能学报》 CSCD 北大核心 2024年第12期637-649,共13页
目前虚拟电厂参与配电网调度多依赖物理模型,然而,由于虚拟电厂聚合成员的多元性、时变性、时序耦合性,导致其解析建模难度增大,难以满足配电网日内调度需求的时效性,且存在隐私安全问题。因此,提出一种基于加权K最近邻(WKNN)和核极限... 目前虚拟电厂参与配电网调度多依赖物理模型,然而,由于虚拟电厂聚合成员的多元性、时变性、时序耦合性,导致其解析建模难度增大,难以满足配电网日内调度需求的时效性,且存在隐私安全问题。因此,提出一种基于加权K最近邻(WKNN)和核极限学习机-高斯过程回归(KELM-GPR)的虚拟电厂交互模型构建方法。首先为提升交互模型的预测精度,提出一种均匀生成训练集的方法;其次通过WKNN算法建立调度指令可行性模型,衡量虚拟电厂的可调度边界;接着引入GPR作为误差补偿模型,并与KELM结合,构建基于KELM-GPR的虚拟电厂交互成本模型,以参与配电网的经济调度;最后为验证所提方法的可行性,基于虚拟电厂调度指令可行性和交互成本模型,构建虚拟电厂参与配电网日内优化调度模型。仿真结果表明,所提方法能显著减少模型优化求解时间,并能保护虚拟电厂内部信息安全。 展开更多
关键词 虚拟电厂 机器学习 优化调度 误差补偿 建模方法
在线阅读 下载PDF
A Novel Kernel for Least Squares Support Vector Machine
9
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
在线阅读 下载PDF
基于SSA-LSTM采动覆岩裂隙带高度预测方法研究 被引量:1
10
作者 林海飞 张宇少 +4 位作者 周捷 葛佳琪 李文静 王琳 王锴 《矿业安全与环保》 CAS 北大核心 2024年第3期8-15,共8页
采动覆岩裂隙带高度决定了卸压瓦斯抽采钻孔终孔或巷道层位布置参数,为进一步提高其预测精度,采集了不同矿区的361组数据,分析了采动裂隙带高度与采高、煤层倾角、工作面斜长、采深、硬岩岩性比例系数之间的关系;采用深度信念网络(DBN)... 采动覆岩裂隙带高度决定了卸压瓦斯抽采钻孔终孔或巷道层位布置参数,为进一步提高其预测精度,采集了不同矿区的361组数据,分析了采动裂隙带高度与采高、煤层倾角、工作面斜长、采深、硬岩岩性比例系数之间的关系;采用深度信念网络(DBN)、长短期记忆网络(LSTM)、Elman神经网络(ENN)等3种机器学习算法对采动裂隙带高度进行五折交叉验证,基于判定系数、均方根误差、平均绝对误差、平均绝对百分比误差等常用评价指标,筛选出LSTM为初步预测模型;采用遗传算法(GA)和麻雀搜索算法(SSA),对采动裂隙带高度LSTM预测模型进行优化,得到LSTM、GA-LSTM、SSALSTM 3种模型的预测结果。结果表明:SSA-LSTM预测模型较LSTM、GA-LSTM预测模型预测结果更优,其判定系数、均方根误差、平均绝对误差、平均百分比误差分别为0.991、0.329、0.148、0.017,各精度评估指标均符合判定要求,所构建的采动裂隙带高度预测模型精度较高且具有一定普适性。 展开更多
关键词 采动裂隙带高度 预测方法 机器学习 长短期记忆网络 麻雀优化
在线阅读 下载PDF
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
11
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius machine learning Kernel ridge regression method
在线阅读 下载PDF
Research on fault time prediction method for high speed rail BTM unit based on multi method interactive validation
12
作者 Limin Fu Junqiang Gou +2 位作者 Chao Sun Hanrui Li Wei Liu 《High-Speed Railway》 2024年第3期164-171,共8页
The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board... The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance. 展开更多
关键词 High speed rail BTM unit Remaining faultless operating time machine learning Multi method interactive verification
在线阅读 下载PDF
基于改进QGA-ELM的瓦斯涌出量预测模型
13
作者 星宁江 周文铮 刘雨竹 《矿业安全与环保》 CAS 北大核心 2024年第5期38-45,共8页
针对现有的瓦斯涌出量预测方法普遍未定量分析数据自身因素影响的问题,提出一种改进量子遗传算法(IQGA)优化极限学习机(ELM)瓦斯涌出量预测模型。采用孤立森林(iForest)算法检测绝对瓦斯涌出量的概念漂移,并选择Attention机制的CNN-BiL... 针对现有的瓦斯涌出量预测方法普遍未定量分析数据自身因素影响的问题,提出一种改进量子遗传算法(IQGA)优化极限学习机(ELM)瓦斯涌出量预测模型。采用孤立森林(iForest)算法检测绝对瓦斯涌出量的概念漂移,并选择Attention机制的CNN-BiLSTM算法修正概念漂移异常值;利用相关性分析法(PCC)降维处理输入变量,确定预测模型的辅助变量;引入动态调整量子旋转角、量子交叉、量子变异及量子灾变操作获得改进量子遗传算法(IQGA),提升算法寻优能力和泛化能力,使用IQGA对ELM参数寻优。以决定系数(R 2)、平均绝对误差(MAE)、均方根误差(RMSE)及平均绝对百分比误差(MAPE)为指标进行评估,结果表明:IQGA-ELM模型测量误差最小,指标分别为0.985、0.018、0.026及2.56%,预测效果优于其他模型,预测精确度更高。 展开更多
关键词 瓦斯涌出量 概念漂移 量子遗传 极限学习机 预测方法
在线阅读 下载PDF
机器学习方法在带孔薄板应力分析中的应用
14
作者 荆宇航 王朝阳 +4 位作者 蔺永康 杨志强 方国东 赵锐 李景彤 《力学与实践》 2025年第2期285-294,共10页
采用机器学习结合计算力学分析了带孔薄板的应力问题,其中数据驱动神经网络依赖于输入数据,通过学习数据中的模式来进行预测。物理信息神经网络通过嵌入平衡方程,提高了准确性和泛化能力。深度能量法根据最小势能原理构造损失函数,计算... 采用机器学习结合计算力学分析了带孔薄板的应力问题,其中数据驱动神经网络依赖于输入数据,通过学习数据中的模式来进行预测。物理信息神经网络通过嵌入平衡方程,提高了准确性和泛化能力。深度能量法根据最小势能原理构造损失函数,计算效率和准确性明显更优,给出了其在双向均匀拉伸和非均匀拉伸下的Von Mises应力和误差云图,误差不超过5%。与机器学习的交叉有力地促进了计算力学研究范式的创新,并不断拓展其深度和应用范围。 展开更多
关键词 机器学习 神经网络 物理信息 深度能量法 应力分析
在线阅读 下载PDF
基于学习算法的结构大变形预测及气动弹性分析
15
作者 陈乔 安朝 +1 位作者 谢长川 杨超 《北京航空航天大学学报》 北大核心 2025年第3期943-952,共10页
大柔性飞行器在气动载荷作用下会产生较大的结构变形,动力学特性发生明显改变,准确的结构变形预测对大柔性飞行器设计及气动弹性仿真具有重要意义。几何非线性有限元等全阶结构模型仿真效率低,已有的非线性结构降阶模型(ROM)具有较高的... 大柔性飞行器在气动载荷作用下会产生较大的结构变形,动力学特性发生明显改变,准确的结构变形预测对大柔性飞行器设计及气动弹性仿真具有重要意义。几何非线性有限元等全阶结构模型仿真效率低,已有的非线性结构降阶模型(ROM)具有较高的仿真效率,但建立降阶模型的过程中需要大量样本数据。基于学习算法建立考虑几何非线性因素的大柔性结构静变形预测模型,利用均方根误差(RMSE)对该预测模型进行性能评估,论证几类学习算法在结构大变形预测中的适用性。结合结构大变形预测模型与曲面涡格法(VLM)提出一种新的几何非线性静气动弹性分析方法,兼顾计算精度与效率。采用所提方法计算单梁式机翼静气动弹性变形,对比仿真结果与风洞试验结果,表明所提方法计算精度及效率高,实际应用价值较大。 展开更多
关键词 几何非线性 机器学习 气动弹性 涡格法 结构大变形
在线阅读 下载PDF
机器学习方法用于选择性环氧化酶-2抑制剂活性预测模型的建立 被引量:2
16
作者 王正国 饶含兵 李泽荣 《化学研究与应用》 CAS CSCD 北大核心 2006年第11期1317-1321,共5页
与传统的非甾体类消炎药相比,选择性环氧化酶-2抑制剂具有无胃肠道粘膜损伤,溃疡和肾功能障碍等严重的副作用,设计选择性环氧化酶-2抑制剂具有重要意义。本文用支持矢量学习机和神经网络两种机器学习方法建立选择性环氧化酶-2抑制剂的... 与传统的非甾体类消炎药相比,选择性环氧化酶-2抑制剂具有无胃肠道粘膜损伤,溃疡和肾功能障碍等严重的副作用,设计选择性环氧化酶-2抑制剂具有重要意义。本文用支持矢量学习机和神经网络两种机器学习方法建立选择性环氧化酶-2抑制剂的活性预测模型,以期为选择性环氧化酶-2抑制剂药物的合成提供先导化合物。我们将467个环氧化酶-2抑制剂用Kennard-Stone方法分为训练集,验证集和独立测试集,对每一抑制剂分子我们计算了463个包含组成描述符和拓扑描述符的分子描述符来表征其分子结构,并通过F-Score方法选取最重要的分子描述符用于分类模型的建立。结果表明,SVM方法通过变量筛选后具有很好的预测能力,其预测正确率达到93.30%。 展开更多
关键词 环氧化酶-2抑制剂 分子描述符 机器学习方法
在线阅读 下载PDF
基于机器学习的极震区烈度快速预测方法
17
作者 王茂岑 张令心 +2 位作者 钟江荣 张云霞 张鹏 《振动与冲击》 北大核心 2025年第2期235-244,共10页
极震区烈度的快速准确评估对于震后的应急响应至关重要。针对现有的极震区烈度预测精度差的问题,首先,整理了1949年—2021年的406次震级大于5.0且极震区烈度大于Ⅴ度的历史震例;然后,基于输入参数可在震后快速易于获取的原则,选择震级... 极震区烈度的快速准确评估对于震后的应急响应至关重要。针对现有的极震区烈度预测精度差的问题,首先,整理了1949年—2021年的406次震级大于5.0且极震区烈度大于Ⅴ度的历史震例;然后,基于输入参数可在震后快速易于获取的原则,选择震级和震源深度作为输入参数,分别建立了基于随机森林、k近邻、逻辑回归以及决策树4种机器学习模型的极震区烈度快速预测方法;最后,对这几种方法的性能进行比较,并与已有的统计回归方法进行对比。结果显示:基于随机森林模型的预测方法性能更好,预测的准确率也很高;与仅选用震级作为输入参数的预测方法相比,该方法的准确率得到了较大提高;与现有的统计回归方法相比,该方法在准确率上有明显优越性。 展开更多
关键词 震级 震源深度 极震区烈度 机器学习 快速预测方法
在线阅读 下载PDF
基于冲击回波法的混凝土-围岩缺陷检测与信号处理研究 被引量:14
18
作者 姚菲 陆幸奇 陈光宇 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第9期2316-2323,共8页
喷射混凝土−围岩(Concrete-Rock,CR)结构的界面黏结缺陷隐蔽性强,缺乏具体有效的质量评价方法。鉴于冲击回波法的传统信号分析方法难以准确识别此类分层结构内部缺陷情况,设计不同接触质量、不同厚度的CR试件,进行冲击回波试验。对回波... 喷射混凝土−围岩(Concrete-Rock,CR)结构的界面黏结缺陷隐蔽性强,缺乏具体有效的质量评价方法。鉴于冲击回波法的传统信号分析方法难以准确识别此类分层结构内部缺陷情况,设计不同接触质量、不同厚度的CR试件,进行冲击回波试验。对回波信号进行频域分析和时频域分析,并对回波信号进行小波包分解,计算小波包相对能量特征值作为支持向量机的输入向量,对不同缺陷进行识别。研究结果表明,CR结构的频域结果中存在多峰值现象,而时频分析综合了时间与频率信息,可获得较好效果,基于小波包相对能量的机器分类可识别缺陷特征,识别率在80%以上。 展开更多
关键词 冲击回波法 混凝土-岩石结构 接触质量 时频域分析 小波包分解 机器学习
在线阅读 下载PDF
基于相关性准则和R-ELM模型的岩溶隧道涌水量预测研究 被引量:9
19
作者 贺华刚 《隧道建设(中英文)》 北大核心 2019年第8期1262-1269,共8页
为实现隧道涌水量的高精度预测,以相关系数法和极限学习机为理论基础,构建隧道涌水量预测模型。首先,结合工程实例对隧道涌水的影响因素进行分析,并利用相关系数法分析各因素与涌水量之间的相关性,以筛选出重要影响因素;其次,将筛选出... 为实现隧道涌水量的高精度预测,以相关系数法和极限学习机为理论基础,构建隧道涌水量预测模型。首先,结合工程实例对隧道涌水的影响因素进行分析,并利用相关系数法分析各因素与涌水量之间的相关性,以筛选出重要影响因素;其次,将筛选出的重要因素作为预测模型的输入层,并利用试算法和经验公式优化极限学习机的模型参数,再利用M估计弱化预测误差,进而构建出用于隧道涌水预测的R-ELM模型。研究表明:1)岩溶隧道涌水灾害的影响因素较多,包括5类一级因素和12类二级因素,不同因素对隧道涌水灾害的影响程度存在一定差异;2)R-ELM模型预测结果的平均相对误差仅为1.12%,具有较高的预测精度,不仅验证了模型参数优化和M估计优化的有效性,也验证了R-ELM模型在隧道涌水量预测中的适用性。 展开更多
关键词 隧道涌水 相关系数法 极限学习机 M估计 R-ELM模型 涌水量预测
在线阅读 下载PDF
基于SGMD及LWOA-ELM的有限元模型修正 被引量:1
20
作者 赵宇 彭珍瑞 《计算力学学报》 CAS CSCD 北大核心 2023年第2期255-263,共9页
为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,... 为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,采用能量熵增量法确定重组辛几何分量(SGC)构成SGC矩阵。然后,利用LWOA对ELM的权值和阈值进行优化,提高ELM模型的预测效率,以LWOA-ELM为代理模型映射出待修正参数与SGC矩阵之间的关系。最后,以试验频响函数SGC矩阵与LWOA-ELM模型输出所得矩阵差值的F-范数最小为目标函数,结合LWOA求解待修正参数。算例分析表明,提出的方法用于有限元模型修正有较好的可行性和有效性。以SGC矩阵表征AFRF的修正方法,有较好的噪声鲁棒性;LWOA-ELM作为代理模型预测精度高,泛化能力强。 展开更多
关键词 模型修正 辛几何模态分解 能量熵增量法 极限学习机 鲸鱼优化算法
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部