We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the las...We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the laser cooled 85Rb and laa cs atoms in a dual species, forced dark magneto-optical trap. The special intermediate level (5)O+ (u = 10) correlated to the (2)311 electric state is achieved by the photoassociation process. The formed ground state X1∑+ (u = 0) molecule is resonantly excited to the 2111 intermediate state by a 651 nm pulse laser and is ionized by a 532nm pulse laser and then detected by the time-of-flight mass spectrum. Saturation of the photoionization spectroscopy at large ionization laser energy is observed and the ionization efficiency is obtained from the fitting. The production of ultracold ground state 85Rblaacs molecules is facilitative for the further research about the manipulation of ultracold molecules in the rovibrational ground state.展开更多
A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a...A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB921603the National Natural Science Foundation of China under Grant Nos 61275209,11304189,61378015 and 11434007+1 种基金the National Natural Science Foundation for Excellent Research Team under Grant No 61121064the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT13076
文摘We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the laser cooled 85Rb and laa cs atoms in a dual species, forced dark magneto-optical trap. The special intermediate level (5)O+ (u = 10) correlated to the (2)311 electric state is achieved by the photoassociation process. The formed ground state X1∑+ (u = 0) molecule is resonantly excited to the 2111 intermediate state by a 651 nm pulse laser and is ionized by a 532nm pulse laser and then detected by the time-of-flight mass spectrum. Saturation of the photoionization spectroscopy at large ionization laser energy is observed and the ionization efficiency is obtained from the fitting. The production of ultracold ground state 85Rblaacs molecules is facilitative for the further research about the manipulation of ultracold molecules in the rovibrational ground state.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074040,11504192,11674187,11604172,and 51403114)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2012FZ006 and BS2014CL010)the China Postdoctoral Science Foundation(Grant Nos.2014M551868 and 2015M570570)
文摘A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.