Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition...Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.展开更多
Reducing the amount of aluminum chloride needed for the catalytic preparation of high quality mesophase and carbon materials is important and we have found that using terephthalic acid(PTA)as a co-catalyst serves this...Reducing the amount of aluminum chloride needed for the catalytic preparation of high quality mesophase and carbon materials is important and we have found that using terephthalic acid(PTA)as a co-catalyst serves this purpose.By adding 3%(mass fraction)AlCl_(3)and 0.9%(mass fraction)PTA to the coal tar pitch,approximately 90%mesophase was synthesized.The product(M-3-0.9)had a high stacking order(L_(c)=3.1 nm,n=10.14)and aromaticity(0.942).By adding PTA,a larger anisotropy content was produced using a smaller amount of AlCl_(3).The PTA participated in the polycondensation reaction through its own benzene ring structure to increase the catalytic activity.However,when its content was higher than 1.5%,the number of oxygen-containing groups in the product increased which was unfavorable for the aromatic lamellar stacking and gave rise to more isotropic structures.The work opens up a new way to prepare mesophase by a catalytic method.展开更多
基金supported by the National Natural Science Foundation of China(21576046)the Innovation Team Support Program in Key Areas of the Dalian Science and Technology Bureau(2019RT10).
文摘Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.
文摘Reducing the amount of aluminum chloride needed for the catalytic preparation of high quality mesophase and carbon materials is important and we have found that using terephthalic acid(PTA)as a co-catalyst serves this purpose.By adding 3%(mass fraction)AlCl_(3)and 0.9%(mass fraction)PTA to the coal tar pitch,approximately 90%mesophase was synthesized.The product(M-3-0.9)had a high stacking order(L_(c)=3.1 nm,n=10.14)and aromaticity(0.942).By adding PTA,a larger anisotropy content was produced using a smaller amount of AlCl_(3).The PTA participated in the polycondensation reaction through its own benzene ring structure to increase the catalytic activity.However,when its content was higher than 1.5%,the number of oxygen-containing groups in the product increased which was unfavorable for the aromatic lamellar stacking and gave rise to more isotropic structures.The work opens up a new way to prepare mesophase by a catalytic method.