A series of tests are performed for 316L stainless steel under multiaxial nonproportional low cycle fatigue(LCF). The microstructures of the steel in the process of nonproportional LCF are observed with transmissio...A series of tests are performed for 316L stainless steel under multiaxial nonproportional low cycle fatigue(LCF). The microstructures of the steel in the process of nonproportional LCF are observed with transmission electron microscopy (TEM). Based on macroscopic and microscopic experiments, the micromechanism of additional hardening and the decrease in LCF life under nonproportional cyclic loading are studied. The results of the tests indicate that 316L stainless steel obviously exhibits nonproportional cyclic additional hardening, which is mainly due to rotation of maximum shear stress plane during the LCF under nonproportional cyclic loading.展开更多
文摘A series of tests are performed for 316L stainless steel under multiaxial nonproportional low cycle fatigue(LCF). The microstructures of the steel in the process of nonproportional LCF are observed with transmission electron microscopy (TEM). Based on macroscopic and microscopic experiments, the micromechanism of additional hardening and the decrease in LCF life under nonproportional cyclic loading are studied. The results of the tests indicate that 316L stainless steel obviously exhibits nonproportional cyclic additional hardening, which is mainly due to rotation of maximum shear stress plane during the LCF under nonproportional cyclic loading.