In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian st...Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.展开更多
In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old...In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.展开更多
Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and th...Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and the D(H) -invariant sub- C * -algebra A H in F, and proves that the correspondence is strictly monotonic.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
基金Supported by NSF 2009J01011 of Fujian of China,NNSF (10826094)NSF 08KJD110001 of Jiangsu Educational Committee
文摘In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
文摘Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology (2010-0022035)
文摘In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.
文摘Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and the D(H) -invariant sub- C * -algebra A H in F, and proves that the correspondence is strictly monotonic.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.