A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:...A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:positive pumping voltage(VPP=4.75 V) ,negative pumping voltage(VNN=4.75 V) ,and VNNL(=VNN/2) generation circuit were proposed.In addition,switching powers CG high voltage(CG_HV) ,CG low voltage(CG_LV) ,TG high voltage(TG_HV) ,TG low voltage(TG_LV) ,VNNL_CG and VNNL_TG switching circuit were supplied for the CG and TG driving circuit.Furthermore,a sequential pumping scheme and a new ring oscillator with a dual oscillation period were proposed.To reduce a power consumption of EEPROM in the write mode,the reference voltages VREF_VPP for VPP and VREE_VNN for VNN were used by dividing VDD(1.2 V) supply voltage supplied from the analog block in stead of removing the reference voltage generators.A voltage level detector using a capacitive divider as a low-power DC-DC converter design technique was proposed.The result shows that the power dissipation is 0.34μW in the read mode,13.76μW in the program mode,and 13.66μW in the erase mode.展开更多
A single poly EEPROM cell circuit sharing the deep N-well of a cell array was designed using the logic process. The proposed cell is written by the FN tunneling scheme and the cell size is 41.26 μm2, about 37% smalle...A single poly EEPROM cell circuit sharing the deep N-well of a cell array was designed using the logic process. The proposed cell is written by the FN tunneling scheme and the cell size is 41.26 μm2, about 37% smaller than the conventional cell. Also, a small-area and low-power 512-bit EEPROM IP was designed using the proposed cells which was used for a 900 MHz passive UHF RFID tag chip. To secure the operation of the cell proposed with 3.3 V devices and the reliability of the used devices, an EEPROM core circuit and a DC-DC converter were proposed. Simulation results for the designed EEPROM IP based on the 0.18μm logic process show that the power consumptions in read mode, program mode and erase mode are 11.82, 25.15, and 24.08 ~tW, respectively, and the EEPROM size is 0.12 mm2.展开更多
Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the ...Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.展开更多
基金Project supported by the Second Stage of Brain Korea 21
文摘A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:positive pumping voltage(VPP=4.75 V) ,negative pumping voltage(VNN=4.75 V) ,and VNNL(=VNN/2) generation circuit were proposed.In addition,switching powers CG high voltage(CG_HV) ,CG low voltage(CG_LV) ,TG high voltage(TG_HV) ,TG low voltage(TG_LV) ,VNNL_CG and VNNL_TG switching circuit were supplied for the CG and TG driving circuit.Furthermore,a sequential pumping scheme and a new ring oscillator with a dual oscillation period were proposed.To reduce a power consumption of EEPROM in the write mode,the reference voltages VREF_VPP for VPP and VREE_VNN for VNN were used by dividing VDD(1.2 V) supply voltage supplied from the analog block in stead of removing the reference voltage generators.A voltage level detector using a capacitive divider as a low-power DC-DC converter design technique was proposed.The result shows that the power dissipation is 0.34μW in the read mode,13.76μW in the program mode,and 13.66μW in the erase mode.
基金Project(10039239) supported by the Industrial Strategic Technology Development Program Funded by the Ministry of Knowledge Economy, Korea
文摘A single poly EEPROM cell circuit sharing the deep N-well of a cell array was designed using the logic process. The proposed cell is written by the FN tunneling scheme and the cell size is 41.26 μm2, about 37% smaller than the conventional cell. Also, a small-area and low-power 512-bit EEPROM IP was designed using the proposed cells which was used for a 900 MHz passive UHF RFID tag chip. To secure the operation of the cell proposed with 3.3 V devices and the reliability of the used devices, an EEPROM core circuit and a DC-DC converter were proposed. Simulation results for the designed EEPROM IP based on the 0.18μm logic process show that the power consumptions in read mode, program mode and erase mode are 11.82, 25.15, and 24.08 ~tW, respectively, and the EEPROM size is 0.12 mm2.
基金supported by the National Natural Science Foundation of China(61601501 61502521)
文摘Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.