The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are stu...The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.展开更多
Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness ...Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.展开更多
We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (S...We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.展开更多
Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded ve...Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.展开更多
Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison ...Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing.The optical implementation of the fundamental building blocks of a digital computer,i.e.logic gates,has been investigated extensively in the past few decades.Optical logic gate computing is an alternative approach to various analogue optical computing architectures.In this paper,the latest development of optical logic gate computing with different kinds of implementations is reviewed.Firstly,the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced.And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field,semiconductor optical amplifiers(SOA),highly nonlinear fiber(HNLF),microscale and nanoscale waveguides,and photonic crystal structures is presented.To conclude,the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.展开更多
A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay...A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.展开更多
Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promi...Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density.Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin–orbit torque, the skyrmion Hall effect, skyrmion–skyrmion repulsion, and skyrmion–edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.展开更多
For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been dem...For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.展开更多
Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consist...Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.展开更多
The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the m...The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.展开更多
Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin tra...Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.展开更多
Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operat...Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operations, being realized on macroscopic electrode, are not suitable for implantable logic devices. Here, we demonstrate DNA-based logic gates with electrochemical signal as output combined with gold flower microelectrodes. The designed logic gates are of fast response, enzyme-free, and micrometer scale. They perform well in either pure solution or complex matrices, such as fetal bovine serum,suggesting great potential for in vivo applications.展开更多
We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensi...We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensitive to heating. Furthermore, the spontaneous emission is suppressed since the ions are always in the electronic ground states. The scheme is robust against small fluctuations of parameters, and the conditional phase is tunable.展开更多
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not ...The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.展开更多
All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerica...All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerical simulation, the effects of the input optical wave powers and injection current on the critical factors of the logic gate performances, such as the ON-OFF contrast ratio, the power-output level of the logic '1', and the difference between power outputs of the logic '1', are investigated in detail. In addition, the effect of the counter-propagating CW pump on the gain recovery is analysed.展开更多
Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions ...Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions of △ = δ- 2v cos πk/2 〉〉 g/2 and v-g. Discussion and analysis of the fidelity, gate time and experimental setups show that our schemes are feasible with current optical cavity, atomic trap and optical fibre techniques. Moreover, the atom-cavityfibre coupling can be used to generate an N-qubit nonlocal entanglement and transfer quantum information among N distant atoms by arranging N atom cavity assemblages in a line and connecting each two adjacent cavities with two optical fibres.展开更多
We propose a scheme to construct the multiple-qubit Rydberg quantum controlled-phase gate with one control and multiple target qubits. The proposed quantum logic gate works under the asymmetric-Rydberg-interaction-ind...We propose a scheme to construct the multiple-qubit Rydberg quantum controlled-phase gate with one control and multiple target qubits. The proposed quantum logic gate works under the asymmetric-Rydberg-interaction-induced dipole blockade and can be implemented with three operation steps. The most prominent characteristic of the scheme is that the required operation time and steps keep invariant as the number of qubits increases. The Rydberg state leakage and some practical situations are considered. The Lindblad master equation is used to evaluate and verify the feasibility of the scheme.展开更多
Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex process...Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex processes.In this work,we demonstrate a screen-printed micro supercapacitor diode(MCAPode)that based on the insertion of a finger mode with spinel ZnCo_(2)O_(4) as cathode and activated carbon as anode for the first time,and featuring an excellent area specific capacitance(1.21 mF cm^(-2)at 10 mV s^(-1))and high rectification characteristics(rectification ratioⅠof 11.99 at 40 mV s^(-1)).Taking advantage of the ionic gel electrolyte,which provides excellent stability during repeated flexing and at high temperatures.In addition,MCAPode exhibits excellent electrochemical performance and rectification capability in"AND"and"OR"logic gates.These findings provide practical solutions for future expansion of micro supercapacitor diode applications.展开更多
基金the National Natural Science Foundation of China(60673127)the National High Technology Research and Development Program of China(863Program)(2007AA01Z404)~~
文摘The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.
基金supported by the National Natural Science Foundation of China (12104326,12104329 and 62105228)Natural Science Foundation of Sichuan Province (2022NSFSC2000)+3 种基金the Opening Foundation of State Key Laboratory of Optical Technologies on Nano-Fabrication and MicroEngineeringfunding by Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) under Germany’s Excellence Strategy–EXC 2089/1–390776260 (e-conversion)the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid (SolTech)the support from the China Scholarship Council (CSC)
文摘Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.
文摘We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475120)the Innovative Projects in Guangdong Colleges and Universities,China(Grant Nos.2014KTSCX134 and 2015KTSCX146)
文摘Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.
基金supported by the National Key Research and Development Program of China(Grants No.2021YFA1401500)the National Natural Science Foundation of China(12022416)+3 种基金the Department of Natural Resources of Guangdong Province(No.GDNRC[2022]22)Department of Science and Technology of Guangdong Province(No.2021A0505080002)Intelligent Laser Basic Research Laboratory(No.PCL2021A14-B1)the Hong Kong Research Grants Council(16306220).
文摘Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing.The optical implementation of the fundamental building blocks of a digital computer,i.e.logic gates,has been investigated extensively in the past few decades.Optical logic gate computing is an alternative approach to various analogue optical computing architectures.In this paper,the latest development of optical logic gate computing with different kinds of implementations is reviewed.Firstly,the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced.And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field,semiconductor optical amplifiers(SOA),highly nonlinear fiber(HNLF),microscale and nanoscale waveguides,and photonic crystal structures is presented.To conclude,the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
基金supported by the Doctoral Foundation of the Ministry of Education of China(Grant No 20070386002)
文摘A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.
基金support from the National Natural Science Foundation of China (Grant Nos.51771127,52171188,and 52111530143)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province,China (Grant No.2021ZYD0025)+7 种基金supported by JSPS KAKENHI (Grant No.JP22F22061)support from Guangdong Basic and Applied Basic Research Foundation (Grant No.2021B1515120047)Guangdong Special Support Project (Grant No.2019BT02X030)Shenzhen Fundamental Research Fund (Grant No.JCYJ20210324120213037)Shenzhen Peacock Group Plan (No.KQTD20180413181702403)Pearl River Recruitment Program of Talents (Grant No.2017GC010293)the National Natural Science Foundation of China (Grant Nos.11974298 and 61961136006)support from the Grantsin-Aid Scientific Research from JSPS KAKENHI (Grant Nos.JP20F20363,JP21H01364,and JP21K18872)。
文摘Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density.Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin–orbit torque, the skyrmion Hall effect, skyrmion–skyrmion repulsion, and skyrmion–edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.
基金Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Grant No.11904255)the Key Research and Development Program of Shanxi Province(International Cooperation)(Grant No.201903D421052).
文摘For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MA059)the Major Scientific and Technological Innovation Project(MSTIP)of Shandong Province,China(Grant No.2019JZZY010209)。
文摘Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.
基金National Natural Science Foundation of China(Grant Nos.11874242,21933002,and 11704230)China Postdoctoral Science Foundation(Grant No.2017M612321)the Taishan Scholar Project of Shandong Province of China.
文摘The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.
基金the Natioanl Natural Science Foundation of China (Grant No. 11864011)in part by Youth Project of Scientific and technological Research Program of Chongqing Education Commission (Grant No. KJQN202101204)。
文摘Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.
基金supported by the National Natural Science Foundation of China(Nos.31470960 and 21422508)
文摘Electrochemical logical operations utilizing biological molecules(protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operations, being realized on macroscopic electrode, are not suitable for implantable logic devices. Here, we demonstrate DNA-based logic gates with electrochemical signal as output combined with gold flower microelectrodes. The designed logic gates are of fast response, enzyme-free, and micrometer scale. They perform well in either pure solution or complex matrices, such as fetal bovine serum,suggesting great potential for in vivo applications.
基金Supported by the National Natural Science Foundation of China under Grant No 10225421, and the Fund from Fuzhou University.
文摘We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensitive to heating. Furthermore, the spontaneous emission is suppressed since the ions are always in the electronic ground states. The scheme is robust against small fluctuations of parameters, and the conditional phase is tunable.
基金supported by the National Natural Science Foundation of China(Grant No.51379526)
文摘The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 60407001) and the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390246).
文摘All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerical simulation, the effects of the input optical wave powers and injection current on the critical factors of the logic gate performances, such as the ON-OFF contrast ratio, the power-output level of the logic '1', and the difference between power outputs of the logic '1', are investigated in detail. In addition, the effect of the counter-propagating CW pump on the gain recovery is analysed.
文摘Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions of △ = δ- 2v cos πk/2 〉〉 g/2 and v-g. Discussion and analysis of the fidelity, gate time and experimental setups show that our schemes are feasible with current optical cavity, atomic trap and optical fibre techniques. Moreover, the atom-cavityfibre coupling can be used to generate an N-qubit nonlocal entanglement and transfer quantum information among N distant atoms by arranging N atom cavity assemblages in a line and connecting each two adjacent cavities with two optical fibres.
基金Project supported by the National Natural Science Foundation of China(Grant No.11747096)
文摘We propose a scheme to construct the multiple-qubit Rydberg quantum controlled-phase gate with one control and multiple target qubits. The proposed quantum logic gate works under the asymmetric-Rydberg-interaction-induced dipole blockade and can be implemented with three operation steps. The most prominent characteristic of the scheme is that the required operation time and steps keep invariant as the number of qubits increases. The Rydberg state leakage and some practical situations are considered. The Lindblad master equation is used to evaluate and verify the feasibility of the scheme.
基金the financial support from the Key Project of National Natural Science Foundation of China(12131010)the National Natural Science Foundation of China(22279166)+2 种基金the Special Project for Marine Economy Development of Guangdong Province(GDNRC[2023]26)the International Cooperation Base of Infrared Reflection Liquid Crystal Polymers and Device(2015B050501010)the Guangdong Basic and Applied Basic Research Foundation(2022B1515120019)。
文摘Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex processes.In this work,we demonstrate a screen-printed micro supercapacitor diode(MCAPode)that based on the insertion of a finger mode with spinel ZnCo_(2)O_(4) as cathode and activated carbon as anode for the first time,and featuring an excellent area specific capacitance(1.21 mF cm^(-2)at 10 mV s^(-1))and high rectification characteristics(rectification ratioⅠof 11.99 at 40 mV s^(-1)).Taking advantage of the ionic gel electrolyte,which provides excellent stability during repeated flexing and at high temperatures.In addition,MCAPode exhibits excellent electrochemical performance and rectification capability in"AND"and"OR"logic gates.These findings provide practical solutions for future expansion of micro supercapacitor diode applications.