Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially loc...Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied.展开更多
掌纹识别是一种新兴的身份识别技术,具有易于采集、纹理丰富等优点,为此提出一种基于log-Gabor小波进行特征提取的掌纹识别算法.该算法首先用log-Gabor小波对掌纹目标区域(region of interest,ROI)进行滤波,然后根据滤波后图像的相位信...掌纹识别是一种新兴的身份识别技术,具有易于采集、纹理丰富等优点,为此提出一种基于log-Gabor小波进行特征提取的掌纹识别算法.该算法首先用log-Gabor小波对掌纹目标区域(region of interest,ROI)进行滤波,然后根据滤波后图像的相位信息形成二进制掌纹特征码,最后用汉明距离来衡量不同掌纹特征码的相似度.在UST掌纹库上的实验结果达到了较高的识别率,验证了该算法的有效性.展开更多
文摘Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied.
文摘掌纹识别是一种新兴的身份识别技术,具有易于采集、纹理丰富等优点,为此提出一种基于log-Gabor小波进行特征提取的掌纹识别算法.该算法首先用log-Gabor小波对掌纹目标区域(region of interest,ROI)进行滤波,然后根据滤波后图像的相位信息形成二进制掌纹特征码,最后用汉明距离来衡量不同掌纹特征码的相似度.在UST掌纹库上的实验结果达到了较高的识别率,验证了该算法的有效性.