k-匿名机制是LBS(location based service)中保证查询隐私性的重要手段.已有文献指出,现有的k-匿名机制不能有效保护连续性查询的隐私性.提出一种连续查询发送模型,该模型融合了查询发送时间的间隔模型和连续性模型,针对此模型下的两种k...k-匿名机制是LBS(location based service)中保证查询隐私性的重要手段.已有文献指出,现有的k-匿名机制不能有效保护连续性查询的隐私性.提出一种连续查询发送模型,该模型融合了查询发送时间的间隔模型和连续性模型,针对此模型下的两种k-匿名算法Clique Cloaking和Non-clique Cloaking,分别提出了一种连续查询攻击算法.在此攻击算法下,匿名集的势不再适合作为查询匿名性的度量,因此提出一种基于熵理论的度量方式AD(anonymityd egree).实验结果表明,对连续性很强的查询,攻击算法重识别用户身份的成功率极高;AD比匿名集的势更能反映查询的匿名性.展开更多
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
传统有线监控已无法满足户外突发、特殊事件的处理。移动视频监控可以及时、全面、准确地获取突发事件的信息,使得能正确地指挥调度,将突发事件带来的损害降到最低。现有的无线监测系统一般存在视频画面不流畅及服务单一的缺点,从而提...传统有线监控已无法满足户外突发、特殊事件的处理。移动视频监控可以及时、全面、准确地获取突发事件的信息,使得能正确地指挥调度,将突发事件带来的损害降到最低。现有的无线监测系统一般存在视频画面不流畅及服务单一的缺点,从而提出了移动视频监控系统,该系统采用移动视频QoS(Quality of Service)机制保证视频的质量,并且结合位置服务提高系统的可扩展性。展开更多
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
文摘传统有线监控已无法满足户外突发、特殊事件的处理。移动视频监控可以及时、全面、准确地获取突发事件的信息,使得能正确地指挥调度,将突发事件带来的损害降到最低。现有的无线监测系统一般存在视频画面不流畅及服务单一的缺点,从而提出了移动视频监控系统,该系统采用移动视频QoS(Quality of Service)机制保证视频的质量,并且结合位置服务提高系统的可扩展性。