期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于改进LWPLS的碱性蛋白酶发酵过程软测量建模
1
作者 张卫国 蔡可 《传感器与微系统》 CSCD 2020年第10期108-110,114,共4页
针对微生物发酵过程中关键生物参数难以在线检测的问题,提出一种即时学习建模方法。考虑到微生物发酵的多阶段特性,利用模糊C均值(FCM)聚类算法对发酵数据样本进行聚类;采用具有即时学习策略的局部加权偏最小二乘(LWPLS)算法作为局部建... 针对微生物发酵过程中关键生物参数难以在线检测的问题,提出一种即时学习建模方法。考虑到微生物发酵的多阶段特性,利用模糊C均值(FCM)聚类算法对发酵数据样本进行聚类;采用具有即时学习策略的局部加权偏最小二乘(LWPLS)算法作为局部建模方法;采用粒子群优化(PSO)算法对带宽参数进行优化。最后以碱性蛋白酶发酵过程为例,实验仿真结果表明:所提的FCM-PSO-LWPLS局部软测量建模方法具有较高的预测精度,能适应一般发酵过程中关键生物参数(总糖浓度S)的实时监测。 展开更多
关键词 局部加权偏最小二乘 模糊C均值聚类 粒子群优化算法 软测量 碱性蛋白酶
在线阅读 下载PDF
多工况生产过程下的即时学习能耗预测建模方法 被引量:2
2
作者 卫升 王艳 纪志成 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1378-1391,共14页
针对全局能耗预测模型只适用于部分预测样本且模型计算量大的问题,引入即时学习思想,采用局部加权偏最小二乘法结合能耗模型建立临时局部能耗预测模型;改进粒子群算法的惯性权重,考虑粒子适应度、迭代次数和种群大小对粒子群算法收敛速... 针对全局能耗预测模型只适用于部分预测样本且模型计算量大的问题,引入即时学习思想,采用局部加权偏最小二乘法结合能耗模型建立临时局部能耗预测模型;改进粒子群算法的惯性权重,考虑粒子适应度、迭代次数和种群大小对粒子群算法收敛速度和收敛精度的影响,提出一种非线性变化的自适应惯性权重策略,离线计算阶段使用改进的粒子群算法(adaptive PSO,APSO)对历史样本的带宽参数进行寻优,当预测样本到来时在线更新局部模型。考虑多工况生产场景下不同工况样本之间的能耗差异性所导致的预测误差,增加工况相似性度量过程,提出局部加权偏最小二乘算法与K-means算法相结合的APSO-JITL(just-in-time learning)-CLWPLS(cluster locally weighted partial least squares)能耗预测建模方法,在预测时选取同一工况的历史样本来设计预测样本的带宽参数。通过仿真实验验证了算法有着更高的预测精度且能更好地应对多工况生产场景。 展开更多
关键词 即时学习 局部加权偏最小二乘 聚类 在线建模 多工况 带宽参数 能耗
在线阅读 下载PDF
基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模 被引量:17
3
作者 袁小锋 葛志强 宋执环 《化工学报》 EI CAS CSCD 北大核心 2016年第3期724-728,共5页
工业过程软测量模型常常因为过程的变量漂移、非线性和时变等问题而使得预测性能下降。因此,时间差分已被应用于解决过程变量漂移问题。但是,时间差分框架下的全局模型往往不能很好地描述过程非线性和时变等特性。为此,提出了一种融合... 工业过程软测量模型常常因为过程的变量漂移、非线性和时变等问题而使得预测性能下降。因此,时间差分已被应用于解决过程变量漂移问题。但是,时间差分框架下的全局模型往往不能很好地描述过程非线性和时变等特性。为此,提出了一种融合时间差分模型和局部加权偏最小二乘算法的自适应软测量建模方法。时间差分模型可以大大减少过程变量漂移的影响,而局部加权偏最小二乘算法作为一种即时学习方法,可以有效解决过程非线性和时变问题。该方法的有效性在数值例子和工业过程实例中得到了有效验证。 展开更多
关键词 时间差分模型 局部加权偏最小二乘算法 即时学习 软测量建模 质量预测
在线阅读 下载PDF
基于局部加权偏最小二乘法的冷凝器污垢预测 被引量:24
4
作者 张莹 王耀南 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期299-304,共6页
提出了基于局部加权偏最小二乘回归算法的污垢预测算法,通过在训练集的污垢数据局部模型内对新测得的数据进行偏最小二乘回归分析,并应用自适应算法对模型参数、各模型之间的加权系数进行自动优化调整。算法能很好地解决新旧数据相互影... 提出了基于局部加权偏最小二乘回归算法的污垢预测算法,通过在训练集的污垢数据局部模型内对新测得的数据进行偏最小二乘回归分析,并应用自适应算法对模型参数、各模型之间的加权系数进行自动优化调整。算法能很好地解决新旧数据相互影响问题,以适应冷凝器水质及工况参数的动态变化,具有学习速度快、泛化能力强及鲁棒性强的特点。通过与各种工况下的污垢预测值比较,实验结果说明基于局部加权偏最小二乘回归学习算法的污垢模型预测精度比神经网络模型、渐近污垢模型有显著提高。 展开更多
关键词 冷凝器清洗 污垢预测 局部加权 偏最小二乘法 线性回归
在线阅读 下载PDF
时序局部加权自适应核PLS软测量建模及其应用 被引量:8
5
作者 任佳 马仕强 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第1期1-7,共7页
针对工业现场数据的强非线性、时序性特点,提出了一种结合移动窗口的局部加权自适应核偏最小二乘(LW-AKPLS)算法。在建模阶段,通过移动窗口法对数据集进行动态时序划分后,利用自适应核PLS(AKPLS)进行建模;与固定核函数的核PLS(KPL... 针对工业现场数据的强非线性、时序性特点,提出了一种结合移动窗口的局部加权自适应核偏最小二乘(LW-AKPLS)算法。在建模阶段,通过移动窗口法对数据集进行动态时序划分后,利用自适应核PLS(AKPLS)进行建模;与固定核函数的核PLS(KPLS)不同,AKPLS对于不同子数据集能自适应地选出各自的最优核函数,使模型结构与子数据集充分匹配,有效提高了子模型的预测精度;在预测阶段,利用集成学习进行子模型加权预测,获得的全局模型实用性高、泛化能力强。最后将所提算法在某焦化系统历史数据集上进行了测试应用,预测结果进一步证明了所提算法的有效性。 展开更多
关键词 软测量 强非线性 时序 局部加权 核偏最小二乘法
在线阅读 下载PDF
基于局部加权回归的土壤全氮含量可见-近红外光谱反演 被引量:31
6
作者 陈颂超 冯来磊 +2 位作者 李硕 纪文君 史舟 《土壤学报》 CAS CSCD 北大核心 2015年第2期312-320,共9页
全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全... 全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。 展开更多
关键词 土壤光谱 全氮预测 局部建模 偏最小二乘法 局部加权回归
在线阅读 下载PDF
基于局部加权偏最小二乘的在线多模型建模 被引量:4
7
作者 薛明晨 熊伟丽 徐保国 《计算机应用研究》 CSCD 北大核心 2015年第10期2981-2984,2995,共5页
针对田纳西—伊斯曼(Tennessee-Eastman,TE)过程具有的高度非线性、时变及多个操作模式等特征,为在线预测该过程产品流道中各种成分的含量,提出一种基于局部加权偏最小二乘的多模型建模方法。多模型建模方法首先要进行子模型的划分,将T... 针对田纳西—伊斯曼(Tennessee-Eastman,TE)过程具有的高度非线性、时变及多个操作模式等特征,为在线预测该过程产品流道中各种成分的含量,提出一种基于局部加权偏最小二乘的多模型建模方法。多模型建模方法首先要进行子模型的划分,将TE过程各种操作模式下的训练数据放入不同数据库中,利用贝叶斯分类器对在线测得的数据进行分类;然后采用即时(just-in-time,JIT)建模思想,基于局部加权偏最小二乘建立相应的在线局部模型;最后,将贝叶斯分类器得到的测试数据属于各个数据库的后验概率作为加权系数,对得到的局部模型的预测结果进行融合输出。基于TE化工过程仿真平台,采用该方法来预测产品流道中成分G和H的含量与真值基本一致,证明提出的基于局部加权偏最小二乘的在线多模型建模方法具有良好的预测效果。 展开更多
关键词 多模型 贝叶斯分类器 局部加权偏最小二乘 在线 即时
在线阅读 下载PDF
基于局部加权偏最小二乘的近红外光谱分析方法研究 被引量:4
8
作者 马力文 郭拓 +2 位作者 马晋芳 史庆龙 肖环贤 《分析测试学报》 CAS CSCD 北大核心 2020年第10期1254-1259,共6页
针对近红外光谱分析技术中分析对象非线性现象突出的情况,提出了一种新的模型计算方法——局部加权偏最小二乘法(LWPLS)。以安胎丸为研究对象,采用LWPLS算法进行其近红外定量模型的建立,并比较偏最小二乘法(PLS)与LWPLS两种算法建立定... 针对近红外光谱分析技术中分析对象非线性现象突出的情况,提出了一种新的模型计算方法——局部加权偏最小二乘法(LWPLS)。以安胎丸为研究对象,采用LWPLS算法进行其近红外定量模型的建立,并比较偏最小二乘法(PLS)与LWPLS两种算法建立定量模型的精度。结果测得两种算法建立的校正模型中,阿魏酸的模型相关系数(R2)分别为0.7855、0.9719,预测误差均方根(RMSEP)分别为0.1266、0.0438,相对预测误差(RE)分别为12.66%、9.18%;洋川芎内酯A的R2分别为0.8864、0.9649,RMSEP分别为0.1148、0.0771,RE分别为14.01%、7.81%,显示LWPLS算法建立的模型精度更高。研究表明,采用LWPLS算法可提高安胎丸定量模型的准确性,具有可推广性和广泛的应用性。 展开更多
关键词 局部加权偏最小二乘法(lwpls) 近红外光谱 偏最小二乘法(PLS) 阿魏酸 洋川芎内酯A
在线阅读 下载PDF
局部惩罚加权核偏最小二乘算法及其应用 被引量:3
9
作者 杨慧中 陈定三 《控制工程》 CSCD 北大核心 2011年第6期886-889,共4页
为改善软测量模型精度,提出了一种局部惩罚加权核偏最小二乘算法。该方法通过核映射将原始输入映射到高维特征空间实现对非线性问题的线性化处理,并通过偏最小二乘算法进行主成分提取,降低数据维数;对由主成分构成的新数据集,依据局部... 为改善软测量模型精度,提出了一种局部惩罚加权核偏最小二乘算法。该方法通过核映射将原始输入映射到高维特征空间实现对非线性问题的线性化处理,并通过偏最小二乘算法进行主成分提取,降低数据维数;对由主成分构成的新数据集,依据局部学习思想构建局部惩罚加权最小二乘回归模型,降低模型对异常数据的敏感度、优化模型参数。鉴于多模型可以改善模型估计精度,提高泛化性,采用C-NN近邻扩张搜索聚类算法对样本集进行聚类,对得到的聚类子簇依据上述算法建立回归子模型,得到多模型软测量系统。将其应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了方法的有效性。 展开更多
关键词 核偏最小二乘 局部学习 惩罚加权最小二乘 软测量 多模型
在线阅读 下载PDF
基于EM算法的半监督局部加权PLS在线建模方法 被引量:3
10
作者 熊伟丽 薛明晨 李妍君 《系统仿真学报》 CAS CSCD 北大核心 2018年第1期8-17,共10页
针对化工过程采样分析获得的有标签样本数量较少的问题,提出一种基于半监督学习的局部加权偏最小二乘在线软测量建模方法。将过程收集到的有标签及无标签训练样本放入同一数据库中;对于在线测得的新数据点,计算其与数据库中各样本点之... 针对化工过程采样分析获得的有标签样本数量较少的问题,提出一种基于半监督学习的局部加权偏最小二乘在线软测量建模方法。将过程收集到的有标签及无标签训练样本放入同一数据库中;对于在线测得的新数据点,计算其与数据库中各样本点之间的相似度,将其作为各数据点的权重;建立半监督局部加权偏最小二乘在线软测量模型,并采用EM(Expectation Maximization)算法估计模型的参数,得到模型的在线预测输出。通过对脱丁烷塔过程的仿真研究,验证了所提方法具有良好的预测精度和泛化性能。 展开更多
关键词 半监督 局部加权偏最小二乘 EM算法 在线建模
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部