Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational tra...Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.展开更多
目的探讨不同噪声条件下健听人群水平声源定位能力的差异。方法选取2022年8月~2023年8月在我院检查的听力正常者78例,测试在安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,受试者应答扬声器与发声扬声器的均方根误差(root...目的探讨不同噪声条件下健听人群水平声源定位能力的差异。方法选取2022年8月~2023年8月在我院检查的听力正常者78例,测试在安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,受试者应答扬声器与发声扬声器的均方根误差(root mean square error,RMSE)和平均应答时间。结果不同噪声条件下受试者平均应答时间比较无显著差异(P>0.05);安静条件下受试者RMSE为10.21°±1.55°,明显低于白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下(P<0.05);白噪声40 dB SPL、言语噪声40 dB SPL条件下受试者RMSE分别为15.02°±2.22°和15.16°±2.06°,明显高于白噪声35 dB SPL(P<0.05);安静、白噪声35 dB SPL、白噪声40 dB SPL和言语噪声40 dB SPL条件下受试者对低频、中频和高频刺激声的平均应答时间无显著差异(P>0.05);白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对高频刺激声的RMSE均高于低频、中频刺激声(P<0.05),对中频刺激声的RMSE均高于低频刺激声(P<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方声源的RMSE明显低于其他方位(P<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方和其他方位声源的平均应答时间无显著差异(P>0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,不同性别、年龄受试者RMSE及平均应答时间无显著差异(P>0.05)。结论噪声对健听人群声源识别定位能力有明显影响,在不同噪声条件下,受试者更容易定位来自前方的声源。展开更多
文摘Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.
文摘目的探讨不同噪声条件下健听人群水平声源定位能力的差异。方法选取2022年8月~2023年8月在我院检查的听力正常者78例,测试在安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,受试者应答扬声器与发声扬声器的均方根误差(root mean square error,RMSE)和平均应答时间。结果不同噪声条件下受试者平均应答时间比较无显著差异(P>0.05);安静条件下受试者RMSE为10.21°±1.55°,明显低于白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下(P<0.05);白噪声40 dB SPL、言语噪声40 dB SPL条件下受试者RMSE分别为15.02°±2.22°和15.16°±2.06°,明显高于白噪声35 dB SPL(P<0.05);安静、白噪声35 dB SPL、白噪声40 dB SPL和言语噪声40 dB SPL条件下受试者对低频、中频和高频刺激声的平均应答时间无显著差异(P>0.05);白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对高频刺激声的RMSE均高于低频、中频刺激声(P<0.05),对中频刺激声的RMSE均高于低频刺激声(P<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方声源的RMSE明显低于其他方位(P<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方和其他方位声源的平均应答时间无显著差异(P>0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,不同性别、年龄受试者RMSE及平均应答时间无显著差异(P>0.05)。结论噪声对健听人群声源识别定位能力有明显影响,在不同噪声条件下,受试者更容易定位来自前方的声源。