期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于局部加权均值的领域适应学习框架 被引量:10
1
作者 皋军 黄丽莉 孙长银 《自动化学报》 EI CSCD 北大核心 2013年第7期1037-1052,共16页
最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法... 最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势. 展开更多
关键词 迁移学习 领域适应学习 局部加权均值 投影最大局部加权均值差异 基于局部加权均值的领域适应学习框架
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部