期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
薄板的局部Petrov-Galerkin方法 被引量:22
1
作者 熊渊博 龙述尧 《应用数学和力学》 EI CSCD 北大核心 2004年第2期189-196,共8页
 利用薄板控制微分方程的等效积分对称弱形式和对变量(挠度)采用移动最小二乘近似函数进行插值,研究了薄板弯曲问题的无网格局部Petrov_Galerkin方法· 这是一种真正的无网格方法,它不需要任何有限元或边界元网格,不管这种网格...  利用薄板控制微分方程的等效积分对称弱形式和对变量(挠度)采用移动最小二乘近似函数进行插值,研究了薄板弯曲问题的无网格局部Petrov_Galerkin方法· 这是一种真正的无网格方法,它不需要任何有限元或边界元网格,不管这种网格是用于能量积分还是进行插值的目的· 所有的积分都在规则形状的子域及其边界上进行,并用罚因子法施加本质边界条件· 数值例子表明,无网格局部Petrov_Galerkin法不但能够求解二阶微分方程的边值问题,而且求解四阶微分方程的边值问题也很有效,也具有收敛快、稳定性好。 展开更多
关键词 薄板 无网格局部Pertov-Calerkin方法 移动最小二乘近似 微分方程的等效 积分对称弱形式
在线阅读 下载PDF
无网格局部Petrov-Galerkin方法的改进及其应用 被引量:1
2
作者 姜勇 于宁 李武 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期603-606,共4页
重新审视、研究了无网格局部Petrov-Galerkin方法,在肯定方法优点的同时,指出了它的不足之处,并有针对性地提出了采用蒙特卡罗方法进行数值积分的改进方案.无网格局部Petrov-Galerkin方法的缺点在于刚度矩阵及荷载项的数值积分虽不需要... 重新审视、研究了无网格局部Petrov-Galerkin方法,在肯定方法优点的同时,指出了它的不足之处,并有针对性地提出了采用蒙特卡罗方法进行数值积分的改进方案.无网格局部Petrov-Galerkin方法的缺点在于刚度矩阵及荷载项的数值积分虽不需要在全局背景网格下进行,却需要在局部支撑域布置更为细致的网格.本文的改进方案摒弃了高斯数值积分,采用不需要背景网格的蒙特卡罗随机积分法. 展开更多
关键词 无网格Petrov—Galerkin方法 局部对称弱形式 蒙特卡罗方法 数值积分 完全无网格方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部