期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
稀疏LNMF算法在图像局部特征提取中的应用 被引量:2
1
作者 尚丽 苏品刚 +1 位作者 周昌雄 杜吉祥 《计算机工程与应用》 CSCD 北大核心 2011年第30期206-209,233,共5页
考虑自然图像的先验稀疏结构及其特征子空间的局部性,在局部非负矩阵分解(LNMF)算法的基础上,提出一种具有稀疏约束的局部非负矩阵分解(SC-LNMF)神经网络算法。使用两类自然属性不同的图像在不同的维数下对SC-LNMF网络进行训练,该方法... 考虑自然图像的先验稀疏结构及其特征子空间的局部性,在局部非负矩阵分解(LNMF)算法的基础上,提出一种具有稀疏约束的局部非负矩阵分解(SC-LNMF)神经网络算法。使用两类自然属性不同的图像在不同的维数下对SC-LNMF网络进行训练,该方法都能成功地提取出训练图像的局部特征。与NMF、LNMF特征提取方法相比,实验对比结果证明了SC-LNMF算法能够模拟大脑初级视觉系统V1区感受野的特性,进一步证实了该算法在图像局部特征提取中的有效性和实用性。 展开更多
关键词 稀疏约束 局部非负矩阵分解(lnmf) 自然图像 特征提取
在线阅读 下载PDF
基于EMD-WVD与LNMF的内燃机故障诊断 被引量:18
2
作者 牟伟杰 石林锁 +2 位作者 蔡艳平 刘浩 金广智 《振动与冲击》 EI CSCD 北大核心 2016年第23期191-196,202,共7页
内燃机的振动信号是复杂非平稳信号,准确提取内燃机振动信号中的特征信息进行模式识别,是对振动信号进行故障诊断的关键。基于经验模态分解的维格纳时频分析方法,不但保留了维格纳分布的所有优良特,而且还避免了交叉项的干扰,能够有效... 内燃机的振动信号是复杂非平稳信号,准确提取内燃机振动信号中的特征信息进行模式识别,是对振动信号进行故障诊断的关键。基于经验模态分解的维格纳时频分析方法,不但保留了维格纳分布的所有优良特,而且还避免了交叉项的干扰,能够有效地提取内燃机振动信号的特征信息;在此基础之上,针对传统非负矩阵分解非正交的基矩阵导致数据冗余性较大、影响后续故障分类准确率提高的问题,提出采用局部非负矩阵分解的方法,直接对EMD-WVD时频图像的矩阵进行分解,计算用于内燃机故障诊断的特征参数,并利用特征参数进行故障分类。对内燃机4种不同工况的振动信号进行实验,证明基于EMD-WVD与局部非负矩阵分解的方法对内燃机气门间隙的故障诊断的有效性。 展开更多
关键词 内燃机 故障诊断 时频分布 特征提取 局部非负矩阵分解
在线阅读 下载PDF
基于KVMD-PWVD与LNMF的内燃机振动谱图像识别诊断方法 被引量:17
3
作者 牟伟杰 石林锁 +2 位作者 蔡艳平 孙钢 郑勇 《振动与冲击》 EI CSCD 北大核心 2017年第2期45-51,94,共8页
为了直接对内燃机振动谱图像进行诊断识别,提出一种基于改进变分模态分解(VMD)、伪魏格纳时频分析(PWVD)与局部非负矩阵分解(LNMF)的内燃机振动谱图像识别诊断方法。该方法首先针对VMD分解过程中的层数选取问题,提出了一种中心频率筛选... 为了直接对内燃机振动谱图像进行诊断识别,提出一种基于改进变分模态分解(VMD)、伪魏格纳时频分析(PWVD)与局部非负矩阵分解(LNMF)的内燃机振动谱图像识别诊断方法。该方法首先针对VMD分解过程中的层数选取问题,提出了一种中心频率筛选的VMD分解层数改进方法(KVMD),然后将内燃机振动信号利用KVMD分解成一组单分量模态信号,并对生成的各个单分量信号进行伪魏格纳分析处理后表征成振动谱图像;在此基础上,对生成的内燃机KVMD-PWVD振动谱图像分别采用非负矩阵分解(NMF)和LNMF形成编码矩阵,并采用最近邻分类器、朴素贝叶斯分类器和支持向量机对上述编码矩阵直接进行模式识别,以实现内燃机振动谱图像的自动诊断。最后,将该方法应用在内燃机故障诊断实例中,结果表明:该方法改进了传统图像模式识别中的特征参数方法,能有效诊断出内燃机气门间隙故障,三种分类器识别精度均大于93%,其中支持向量机的分类精度最高,达到99.8%,且采用LNMF形成的编码矩阵识别精度整体高于NMF,为内燃机振动诊断探索了一条新途径。 展开更多
关键词 内燃机 故障诊断 时频分布 特征提取 局部非负矩阵
在线阅读 下载PDF
局部敏感非负矩阵分解 被引量:5
4
作者 姜伟 杨炳儒 隋海峰 《计算机科学》 CSCD 北大核心 2010年第12期211-214,共4页
非负矩阵分解是一种新的基于部分学习的矩阵分解方法,反映了人类思维中局部构成整体的概念。算法只将非负矩阵近似地分解成两个非负矩阵的积,忽略了数据几何结构和判别信息。提出了一个局部敏感非负矩阵分解降维算法来克服这一缺点。该... 非负矩阵分解是一种新的基于部分学习的矩阵分解方法,反映了人类思维中局部构成整体的概念。算法只将非负矩阵近似地分解成两个非负矩阵的积,忽略了数据几何结构和判别信息。提出了一个局部敏感非负矩阵分解降维算法来克服这一缺点。该算法既保持了数据非负性,又保持了数据的几何结构和判别信息。构造了一个有效的乘积更新算法并且在理论上证明了算法的收敛性。ORL和Yale人脸数据库实验表明该算法性能超过许多已存在的方法。 展开更多
关键词 非负矩阵分解 局部敏感分析 判别信息 几何结构
在线阅读 下载PDF
非负矩阵分解算法及其在生物信息学中的应用研究 被引量:7
5
作者 石金龙 骆志刚 《计算机工程与科学》 CSCD 北大核心 2010年第8期117-123,共7页
非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部... 非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部表达属性,综述了标准非负矩阵分解与各种衍生算法的发展历程及算法初始化与参数选取方法的研究进展,并从序列特征分析、表达模式与功能模块识别、生物医学文献挖掘等几个方面总结了非负矩阵分解算法在生物信息学领域的应用成果。最后,指出了非负矩阵分解算法研究及其应用于生物信息处理所面临的问题,分析和预测了可能的发展方向。 展开更多
关键词 非负矩阵分解 生物信息学 局部特征
在线阅读 下载PDF
二维局部非负矩阵分解的路网态势算法 被引量:1
6
作者 许榕 吴聪 +1 位作者 蒋士正 陈启美 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1131-1136,1143,共7页
针对路网态势评测算法存在限于断面、依赖单一指标等的不足,在解析测量指标和测量断面的相关性及局部非负矩阵分解(LNMF)算法的基础上,提出了二维局部非负矩阵分解2DLNMF算法,通过选择合适参数对路网数据进行降维处理,提取路网特征数据... 针对路网态势评测算法存在限于断面、依赖单一指标等的不足,在解析测量指标和测量断面的相关性及局部非负矩阵分解(LNMF)算法的基础上,提出了二维局部非负矩阵分解2DLNMF算法,通过选择合适参数对路网数据进行降维处理,提取路网特征数据,从而实现路网态势评测.仿真结果表明,使用2D-LNMF算法路网态势评测结果更加准确,而在线评测准确性达到95.69%. 展开更多
关键词 路网态势 聚类 二维局部非负矩阵分解 特征提取
在线阅读 下载PDF
邻域保持判别非负矩阵分解 被引量:3
7
作者 王亚芳 《计算机工程与应用》 CSCD 北大核心 2010年第28期163-166,共4页
非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与... 非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与局部保持投影(LPP)综合考虑的判别分析方法,该算法既保持了LDA的判别能力,同时又可以保持原始数据的几何结构。通过将NPDA与NMF相结合,提取得到局部化同时又有很强判别能力的基图像。在ORL人脸数据库上进行人脸识别实验,结果表明该方法得到较好的识别效果。 展开更多
关键词 线性判别分析 邻域保持判别分析 局部保持投影 非负矩阵分解
在线阅读 下载PDF
局部子空间映射在人耳识别中的应用
8
作者 冷加福 穆志纯 万捷 《计算机工程与应用》 CSCD 北大核心 2009年第8期175-177,共3页
比较了三种用于人耳识别的局部表征方法的识别准确率。通过在USTB2人耳库上的实验,对所采用的空间几何距离及选择的特征数进行了一个系统的比较分析。结果表明,方法的识别性能随所用的空间几何距离公式发生较大变化。
关键词 人耳识别 局部非负矩阵分解 独立分量分析 非负矩阵稀疏分解
在线阅读 下载PDF
基于局部相似性学习的鲁棒非负矩阵分解 被引量:3
9
作者 侯兴荣 彭冲 《数据采集与处理》 CSCD 北大核心 2023年第5期1125-1141,共17页
现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Ro... 现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Robust nonnegative matrix factorization with local similarity learning,RLS-NMF)。采用一种新的数据局部相似性学习方法,它与流形方法存在显著区别,能够同时学习数据的全局结构信息,从而能挖掘数据类内相似和类间相离的性质。同时,考虑到现实应用中的数据存在异常值和噪声,该算法还使用l_(2,1)范数拟合特征残差,过滤冗余的噪声信息,保证了算法的鲁棒性。多个基准数据集上的实验结果显示了该算法的最优性能,进一步证明了该算法的有效性。 展开更多
关键词 非负矩阵分解 聚类 全局结构 局部相似性 鲁棒性
在线阅读 下载PDF
融合局部结构学习的大规模子空间聚类算法 被引量:2
10
作者 任奇泽 贾洪杰 陈东宇 《计算机应用》 CSCD 北大核心 2023年第12期3747-3754,共8页
常规的大规模子空间聚类算法在计算锚点亲和矩阵时忽略了数据之间普遍存在的局部结构,且在计算拉普拉斯(Laplacian)矩阵的近似特征向量时存在较大误差,不利于数据聚类。针对上述问题,提出一种融合局部结构学习的大规模子空间聚类算法(LL... 常规的大规模子空间聚类算法在计算锚点亲和矩阵时忽略了数据之间普遍存在的局部结构,且在计算拉普拉斯(Laplacian)矩阵的近似特征向量时存在较大误差,不利于数据聚类。针对上述问题,提出一种融合局部结构学习的大规模子空间聚类算法(LLSC)。所提算法将局部结构学习嵌入锚点亲和矩阵的学习,从而能够综合利用全局和局部信息挖掘数据的子空间结构;此外,受非负矩阵分解(NMF)的启发,设计一种迭代优化方法以简化锚点亲和矩阵的求解过程;其次,根据Nystr?m近似方法建立锚点亲和矩阵与Laplacian矩阵的数学联系,并改进Laplacian矩阵特征向量的计算方法以提升聚类性能。相较于LMVSC(Large-scale Multi-View Subspace Clustering)、SLSR(Scalable Least Square Regression)、LSC-k(Landmark-based Spectral Clustering using k-means)和k-FSC(k-Factorization Subspace Clustering),LLSC在4个广泛使用的大规模数据集上显示出明显的提升,其中,在Pokerhand数据集上,LLSC的准确率比k-FSC高28.18个百分点,验证了LLSC的有效性。 展开更多
关键词 子空间聚类 局部结构学习 非负矩阵分解 大规模聚类 低秩近似
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部