Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color...Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.展开更多
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o...Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.展开更多
基金Projects(61370200,61672130,61602082) supported by the National Natural Science Foundation of ChinaProject(1721203049-1) supported by the Science and Technology Research and Development Plan Project of Handan,Hebei Province,China
文摘Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.
基金supported by the National Natural Science Foundation of China(61471194 61705104)+1 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the Natural Science Foundation of Jiangsu Province(BK20170804)
文摘Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.