With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to o...With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to overcome signal time-varying. A novel fingerprint positioning algorithm, known as the adaptive radio map with updated method based on hidden Markov model (HMM), is proposed. It is shown that by using a collection of user traces that can be cheaply obtained, the proposed algorithm can take advantage of these data to update the labeled calibration data to further improve the position estimation accuracy. This algorithm is a combination of machine learning, information gain theory and fingerprinting. By collecting data and testing the algorithm in a realistic indoor WLAN environment, the experiment results indicate that, compared with the widely used K nearest neighbor algorithm, the proposed algorithm can improve the positioning accuracy while greatly reduce the calibration effort.展开更多
A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio...A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.展开更多
The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameter...The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.展开更多
The research and application of wireless local area networks (WLAN) technology are in a stage of rapid development. It has been one of research focuses of the wireless communications field. Through the use of enhanc...The research and application of wireless local area networks (WLAN) technology are in a stage of rapid development. It has been one of research focuses of the wireless communications field. Through the use of enhanced single-user (SU)/multi-user (MU) multiple input multiple output (MIMO)-orthogonal frequency division multiplexing (OFDM) technology, the next generation WLAN IEEE 802.1 lac dramatically increases the throughput. An improved MIMO-OFDM scheme based on modulation diversity is proposed for the next generation WLAN. It uses two-dimensional modulation diversity to the current IEEE 802.11ac transmission scheme. Through the space-time-frequency component inter- leaver and the rotational modulation, the proposed scheme ex- hibits high spectral efficiency and low error rate in fading channels. The simulation results show that the proposed scheme significantly outperforms the SU/MU MIMO-OFDM scheme in the current IEEE 802.11 ac standard, which is up to 5 dB.展开更多
To guarantee the real-time transmission of a video stream, based on the stochastic optimal control method, a frame layer adaptive rate control algorithm for the wireless transcoder is proposed, which is capable of dyn...To guarantee the real-time transmission of a video stream, based on the stochastic optimal control method, a frame layer adaptive rate control algorithm for the wireless transcoder is proposed, which is capable of dynamically determining the transcoder's objective bit rate, according to the bandwidth variation of the wireless channel and the buffer occupancy. Then the transient performance, steady performance, and computational complexity of the algorithm are analyzed. Finally, the experiment results demonstrate that the algorithm can improve the synthetic performance of rate control through the compromise between the end-to-end delay and the playout quality.展开更多
基金supported by the National Natural Science Foundation of China(61571162)the Major National Science and Technology Project(2014ZX03004003-005)
文摘With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to overcome signal time-varying. A novel fingerprint positioning algorithm, known as the adaptive radio map with updated method based on hidden Markov model (HMM), is proposed. It is shown that by using a collection of user traces that can be cheaply obtained, the proposed algorithm can take advantage of these data to update the labeled calibration data to further improve the position estimation accuracy. This algorithm is a combination of machine learning, information gain theory and fingerprinting. By collecting data and testing the algorithm in a realistic indoor WLAN environment, the experiment results indicate that, compared with the widely used K nearest neighbor algorithm, the proposed algorithm can improve the positioning accuracy while greatly reduce the calibration effort.
基金Supported by the National Key Research and Development Program of China(2021YFB2800201)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)。
文摘A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.
基金Project(60673164) supported by the National Natural Science Foundation of ChinaProject(06JJ10009) supported by the Natural Science Foundation of Hunan Province, China+2 种基金Project(20060533057) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2008CB317107) supported by the Major State Basic Research and Development Program of ChinaProject(NCET-05-0683) supported by the Program for New Century Excellent Talents in University
文摘The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.
基金supported by the National Natural Science Foundation of China(61171101)the National Great Science Specific Project of China(2009ZX03003-011-03)
文摘The research and application of wireless local area networks (WLAN) technology are in a stage of rapid development. It has been one of research focuses of the wireless communications field. Through the use of enhanced single-user (SU)/multi-user (MU) multiple input multiple output (MIMO)-orthogonal frequency division multiplexing (OFDM) technology, the next generation WLAN IEEE 802.1 lac dramatically increases the throughput. An improved MIMO-OFDM scheme based on modulation diversity is proposed for the next generation WLAN. It uses two-dimensional modulation diversity to the current IEEE 802.11ac transmission scheme. Through the space-time-frequency component inter- leaver and the rotational modulation, the proposed scheme ex- hibits high spectral efficiency and low error rate in fading channels. The simulation results show that the proposed scheme significantly outperforms the SU/MU MIMO-OFDM scheme in the current IEEE 802.11 ac standard, which is up to 5 dB.
基金the National High Technology Research and Development Program (2007AA1Z24002003AA1Z2210).
文摘To guarantee the real-time transmission of a video stream, based on the stochastic optimal control method, a frame layer adaptive rate control algorithm for the wireless transcoder is proposed, which is capable of dynamically determining the transcoder's objective bit rate, according to the bandwidth variation of the wireless channel and the buffer occupancy. Then the transient performance, steady performance, and computational complexity of the algorithm are analyzed. Finally, the experiment results demonstrate that the algorithm can improve the synthetic performance of rate control through the compromise between the end-to-end delay and the playout quality.