Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro...Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.展开更多
粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d iffere...粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d ifference filter,CDF)相结合的新算法,并对测量更新步的加权粒子集应用基于KD-树的加权期望最大(w e igh ted expecta tion m ax im iza tion,W EM)自适应聚类算法获得表示机器人位姿状态后验密度的高斯混合模型(G au ssian m ixtu re m od e l,GMM).实验结果表明,新方法提高了定位准确率,降低了计算复杂度.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62273083 and No.61973069Natural Science Foundation of Hebei Province under Grant No.F2020501012。
文摘Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.
文摘粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d ifference filter,CDF)相结合的新算法,并对测量更新步的加权粒子集应用基于KD-树的加权期望最大(w e igh ted expecta tion m ax im iza tion,W EM)自适应聚类算法获得表示机器人位姿状态后验密度的高斯混合模型(G au ssian m ixtu re m od e l,GMM).实验结果表明,新方法提高了定位准确率,降低了计算复杂度.