A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish...A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.展开更多
The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to captu...The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to capture unexpected risks for mining equipment based upon data-driven method considering different scenarios.Probabilistic risk assessment(PRA)was employed to quantify the loss of production capacity by focusing on severity of failure incidents and maintainability measurements.Discrete-event simulation was configured to characterize the nominal capacity for mining operation.Accordingly,the system capacity was analyzed through the comparison of nominal and actual capacity.A case study was completed to validate the research methodology.The past operation and maintenance field data were collected for shovel operation.The discrete-event simulation was developed to estimate the rate of shovel nominal capacity.Then,the effects of undesirable scenarios were assessed by developing the PRA approach.The research results provide significant insights into how to enhance the production capacity in mines.The analyst gets a well judgment for the crucial elements dealing with high risk levels.A holistic maintenance plan can be developed to mitigate and control the losses.展开更多
基金Project(51178333)supported by the National Natural Science Foundation of ChinaProject(SLDRCE09-D-03)supported by the Ministry of Science and Technology of China
文摘A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.
文摘The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to capture unexpected risks for mining equipment based upon data-driven method considering different scenarios.Probabilistic risk assessment(PRA)was employed to quantify the loss of production capacity by focusing on severity of failure incidents and maintainability measurements.Discrete-event simulation was configured to characterize the nominal capacity for mining operation.Accordingly,the system capacity was analyzed through the comparison of nominal and actual capacity.A case study was completed to validate the research methodology.The past operation and maintenance field data were collected for shovel operation.The discrete-event simulation was developed to estimate the rate of shovel nominal capacity.Then,the effects of undesirable scenarios were assessed by developing the PRA approach.The research results provide significant insights into how to enhance the production capacity in mines.The analyst gets a well judgment for the crucial elements dealing with high risk levels.A holistic maintenance plan can be developed to mitigate and control the losses.