期刊文献+
共找到28,619篇文章
< 1 2 250 >
每页显示 20 50 100
Status and Development of Rapid Detection Technology for Tunnel Structural Defects 被引量:3
1
作者 LIU Xuezeng FANG Maoliu +3 位作者 WU Dexing LI Yinping LIU Xingen LI Gang 《隧道建设(中英文)》 北大核心 2025年第4期657-676,I0005-I0024,共40页
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an... Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection. 展开更多
关键词 tunnel structural defect inspection techniques inspection equipment rapid inspection
在线阅读 下载PDF
Open TBM Tunnel Intelligent Construction Technology 被引量:2
2
作者 LIU Yongsheng CHEN Qiao +4 位作者 ZHANG Hepei LI Shu′ao LIN Chungang YIN Long LI Mengyu 《隧道建设(中英文)》 北大核心 2025年第4期816-833,I0025-I0042,共36页
To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development... To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability. 展开更多
关键词 tunnel open TBM intelligent construction deep learning machine vision
在线阅读 下载PDF
Mitigation strategies for blasting-induced cracks and vibrations in twin-arch tunnel structures 被引量:1
3
作者 Xianshun Zhou Jin Chen +4 位作者 Xuemin Zhang Kai Zhu Yanyong Zhang Jianbo Fei Muhammad Irslan Khalid 《Defence Technology(防务技术)》 2025年第7期242-259,共18页
Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blas... Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blast method,as the short propagation distance amplifies blasting vibrations.A case of blasting damage is reported in this paper,where concrete cracks crossed construction joints in the twin-arch lining.To identify the causes of these cracks and develop effective vibration mitigation measures,field monitoring and numerical analysis were conducted.Specifically,a restart method was used to simulate the second peak particle velocity(PPV)of MS3 delays occurring 50 ms after the MS1 delays.The study found that the dynamic tensile stress in the tunnel induced by the blast wave has a linear relationship with the of the product of the concrete wave impedance and the PPV.A blast vibration velocity exceeding 23.3 cm/s resulted in tensile stress in the lining surpassing the ultimate tensile strength of C30 concrete,leading to tensile cracking on the blast-facing arch of the constructed tunnel.To control excessive vi-bration velocity,a mitigation trench was implemented to reduce blast wave impact.The trench,approximately 15 m in length,50 cm in width,and 450 cm in height,effectively lowered vibration ve-locities,achieving an average reduction rate of 52%according to numerical analysis.A key innovation of this study is the on-site implementation and validation of the trench's effectiveness in mitigating vi-brations.A feasible trench construction configuration was proposed to overcome the limitations of a single trench in fully controlling vibrations.To further enhance protection,zoned blasting and an auxiliary rock pillar,80 cm in width,were incorporated to reinforce the mid-wall.This study introduces novel strategies for vibration protection in tunnel blasting,offering innovative solutions to address blasting-induced vibrations and effectively minimize their impact,thereby enhancing safety and struc-tural stability. 展开更多
关键词 Twin-arch tunnel Drill-and-blast Blasting vibration mitigation LS-DYNA Restart method
在线阅读 下载PDF
Hydraulic fracturing-based analytical method for determining seepage characteristics at tunnel-gasketed joints 被引量:1
4
作者 GONG Chen-jie CHENG Ming-jin +2 位作者 FAN Xuan PENG Yi-cheng DING Wen-qi 《Journal of Central South University》 2025年第4期1520-1534,共15页
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract... Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels. 展开更多
关键词 shield tunnels segment joints seepage characteristics hydraulic fracture analytical solution
在线阅读 下载PDF
Experimental and numerical simulation of the attenuation effect of blast shock waves in tunnels at different altitudes 被引量:1
5
作者 Changjiang Liu Hujun Li +3 位作者 Zhen Wang Yong He Guokai Zhang Mingyang Wang 《Defence Technology(防务技术)》 2025年第1期120-141,共22页
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ... Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes. 展开更多
关键词 Shock wave propagation tunnel Altitude effect Peak overpressure Shock waves velocity Engineering safety
在线阅读 下载PDF
Numerical study on the water inflow and hydraulic pressure of mountain tunnel underpassing a reservoir
6
作者 LIU Dongdong SONG Wenjie +3 位作者 WANG Xintong YANG Tao HUANG Bo ZHONG GUO 《中国水利水电科学研究院学报(中英文)》 北大核心 2025年第5期580-589,共10页
Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a num... Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended. 展开更多
关键词 mountain tunnel water inflow into a tunnel lining water pressure grouting circle stochastic fracture networks
在线阅读 下载PDF
Longitudinal structural vulnerability analysis of shield tunnels under adjacent excavation disturbances
7
作者 PENG Zhu SHI Cheng-hua +2 位作者 WANG Zu-xian LEI Ming-feng PENG Li-min 《Journal of Central South University》 2025年第6期2256-2272,共17页
This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled a... This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure. 展开更多
关键词 shield tunnel foundation pit excavation foundation variability random field VULNERABILITY
在线阅读 下载PDF
Experimental and numerical study on external explosions of cylindrical versus spherical charges at tunnel entrance
8
作者 Dan Luo Jinsheng Hu +4 位作者 Anbao Wang Xiao Yu Mengmeng Zhang Meili Yao Chun Li 《Defence Technology(防务技术)》 2025年第4期227-243,共17页
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha... Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel. 展开更多
关键词 Cylindrical charges tunnel blast wave Equivalent coefficient Empirical formula Experiment and numerical simulation
在线阅读 下载PDF
Analytical solutions of vertical load on deep rectangular jacked pipe considering tunnelling-induced ground loss
9
作者 LI Jian-ye FANG Qian +4 位作者 LIU Xiang WANG Gan HUANG Jun DU Jian-ming ZHANG Zi-yi 《Journal of Central South University》 2025年第5期1855-1872,共18页
Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation... Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed. 展开更多
关键词 rectangular pipe jacking tunnel vertical load multi-layer parabolic soil arch model soil arching
在线阅读 下载PDF
Face stability analysis of longitudinally inclined shield tunnel considering the effect of tensile strength cut-off and pore water pressure
10
作者 HUANG Fu WANG Yong-tao +1 位作者 ZHANG Min YANG Zi-han 《Journal of Central South University》 2025年第3期1080-1098,共19页
Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects... Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective. 展开更多
关键词 longitudinally inclined tunnel pore water pressure tensile strength cut-off spatial discretization technique limit analysis
在线阅读 下载PDF
A novel asymptotic linear method for micro-pressure wave mitigation at high-speed maglev tunnel exit:A case study with various open ratios on tunnel hoods
11
作者 ZHANG Jie ZHANG Mo-lin +2 位作者 HAN Shuai LIU Tang-hong GAO Guang-jun 《Journal of Central South University》 2025年第5期1955-1972,共18页
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n... A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods. 展开更多
关键词 novel asymptotic linear method high-speed maglev train micro-pressure wave tunnel hood with various open ratios
在线阅读 下载PDF
Carbonated water erosion characteristics and mechanism of tunnel lining cement-based materials in karst environment
12
作者 ZOU Min LIU Juan-hong LI Kang 《Journal of Central South University》 2025年第8期3015-3034,共20页
The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated t... The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated to assess erosion depth,microstructure,phase migrations,and pore structure in various tunnel lining cement-based materials.Additionally,Ca^(2+)leaching was analyzed,and impact of Ca/Si molar ratio in hydration products on erosion resistance was discussed by thermodynamic calculations.The results indicate that carbonated water erosion caused rough and porous surface on specimens,with reduced portlandite and CaCO_(3) content,increased porosity,and an enlargement of pore size.The thermodynamic calculations indicate that the erosion is spontaneous,driven by physical dissolution and chemical reactions dominated by Gibbs free energy.And the erosion reactions proceed more spontaneously and extensively when Ca/Si molar ratio in hydration products was higher.Therefore,cement-based materials with higher portlandite content exhibit weaker erosion resistance.Model-building concrete,with C-S-H gel and portlandite as primary hydration products,has greater erosion susceptibility than shotcrete with ettringite as main hydration product.Moreover,adding silicon-rich mineral admixtures can enhance the erosion resistance.This research offers theory and tech insights to boost cement-based material resistance against carbonated water erosion in karst tunnel engineering. 展开更多
关键词 tunnel lining cement-based materials carbonated water erosion phase analysis pore structure Ca/Si molar ratio
在线阅读 下载PDF
Temperature effects on the failure of deep circular tunnel under true-triaxial compression 被引量:2
13
作者 HUANG Lin-qi LIU Mao-lin +4 位作者 WANG Zhao-wei GUO Yi-de SI Xue-feng LI Xi-bing LI Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3119-3141,共23页
The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The fa... The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock. 展开更多
关键词 deep ground rock failure GRANITE thermal treatment true-triaxial test circular tunnel RFPA3D-Thermal
在线阅读 下载PDF
Blasting induced dynamic stress concentration and failure characteristics of deep-buried rock tunnel 被引量:1
14
作者 ZHAO Rui TAO Ming +2 位作者 XIANG Gong-liang WANG Shao-feng ZHAO Hua-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2321-2340,共20页
In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel... In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst. 展开更多
关键词 stress wave scattering dynamic stress analysis rock tunnel dynamic failure analysis
在线阅读 下载PDF
A hybrid ventilation scheme applied to bidirectional excavation tunnel construction with a long inclined shaft 被引量:1
15
作者 YANG Wei-chao WANG Jian +3 位作者 DENG E LIU Yi-kang LUO Lu-sen YANG Jia 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3187-3205,共19页
The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the h... The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel. 展开更多
关键词 bidirectional excavation tunnel inclined shaft hybrid ventilation scheme computational fluid dynamics ventilation efficiency
在线阅读 下载PDF
Numerical Investigation on Hydrodynamic Characteristics of a Tunneled Planing Hull in Calm Water 被引量:1
16
作者 WANG Hui ZHU Ren-chuan +2 位作者 LI Guo-huan XU De-kang LI Chao-fan 《船舶力学》 EI CSCD 北大核心 2024年第12期1864-1879,共16页
A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled pl... A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled planing hull are carried out.The resistance tests of models with three dif ferent masses(127.4 kg,159.5 kg,202.9 kg)are conducted for the Froude number in the range of 0.761≤Fn≤1.925.The results of resistance measured by towing tank imply that the tunneled planing hull with a larger displacement has a superior resistance performance.The numerical simulation of Reynolds Average Navier Stokes(RANS)equations based on the finite volume method is performed to analyze the hull characteristics in calm water(M=159.5 kg)with two degrees of freedom(sinkage and trim).The numerical results are compared with the experimental data,which shows good agreement.Pressure distribution,wave profiles and lift forces obtained by SST k-ωand Realizable k-εturbulence models are compared and discussed.Finally,the local fluid flow of streamline around the hull can be divided into four regions due to the presence of a tunnel,which is different from the behaviors of the conventional planing monohull with prismatic form. 展开更多
关键词 tunneled planing hull experimental test overset mesh method pressure distribution lift force
在线阅读 下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field 被引量:1
17
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
在线阅读 下载PDF
Application of excavation compensation method for enhancing stability and efficiency in shallow large-span rock tunnels
18
作者 BIAN Wen-hui YANG Jun +2 位作者 ZHU Chun WANG Ke-xue XU Dong-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3242-3263,共22页
Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address the... Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field. 展开更多
关键词 excavation compensation method rocky tunnels shallow spanning tunnels tunnel support field test
在线阅读 下载PDF
Extracting the effective mass of fewer layers 2D h-BN nanosheets using the Fowler-Nordheim tunneling model
19
作者 QIN Jia-Yi LUO Man +4 位作者 CHENG Tian-Tian MENG Yu-Xin ZU Yuan-Ze WANG Xin YU Chen-Hui 《红外与毫米波学报》 CSCD 北大核心 2024年第6期744-748,共5页
Hexagonal boron nitride(h-BN)is found to have widespread application,owing to its outstanding properties,including gate dielectrics,passivation layers,and tunneling layers.The current studies on the funda⁃mental physi... Hexagonal boron nitride(h-BN)is found to have widespread application,owing to its outstanding properties,including gate dielectrics,passivation layers,and tunneling layers.The current studies on the funda⁃mental physical properties of these ultrathin h-BN films and the electron tunneling effect among them are inade⁃quate.In this work,the effective mass in h-BN was successfully determined through a combined approach of ex⁃perimental and theoretical research methods by fitting the current-voltage curves of metal/insulator/metal struc⁃tures.It was observed that within a range of 4-22 layers,the effective mass of h-BN exhibits a monotonic de⁃crease with an increase in the number of layers.The physical parameters of the Fowler-Nordheim tunneling model in the context of electron tunneling in h-BN are precisely ascertained by utilizing the extracted effective mass.Ad⁃ditionally,the impact of fixed charges at the metal/h-BN interface and various metal electrode types on FowlerNordheim tunneling within this structure is investigated utilizing this physical parameter in Sentaurus TCAD soft⁃ware.This work is informative and instructive in promoting applications in the fields of h-BN related infrared physics and technology. 展开更多
关键词 H-BN 2D layered material Fowler-Nordheim tunneling gate dielectrics TCAD simulation
在线阅读 下载PDF
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
20
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部