Video data location plays a key role for Peer-to-Peer (P2P) live streaming applications. In this paper, we propose a new one-hop Distributed Hash Table (DHT) lookup frarrework called Strearre ing-DHT (SDHT) to p...Video data location plays a key role for Peer-to-Peer (P2P) live streaming applications. In this paper, we propose a new one-hop Distributed Hash Table (DHT) lookup frarrework called Strearre ing-DHT (SDHT) to provide efficient video data location service. By adopting an enhanced events dissemination mechanism-EDRA+, the accuracy of routing table at peers can be guaranteed. More importantly, in order to enhance the perforlmnce of video data lookup operation without incurring extra overhead, we design a so-called Distributed Index Mapping and Management Mechanism (DIMM) for SDHT. Both analytical modeling and intensive simulation experiments are conducted to demonstrate the effectiveness of SDHT framework. Numerical results show that almost 90% requested video data can be retrieved within one second in SDHT based systems, and SDHT needs only 26% average bandwidth consumption when compared with similar one-hop DHT solutions such as D1HT. This indicates that SDHT framework is an appropriate data lookup solution for time-sensitive network applications such as P2P live streaming.展开更多
Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad dela...Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad delay performance. In this paper, we seek to improve the delay performance under ensuring video display quality stemming from chunk scheduling. And so we model Pull-based chunk scheduling problem as a multi-objective optimization problem to minimize the video delay and maximize video display quality in the environment of heterogeneous upload bandwidths, heterogeneous and dynamic propagation delays. Finally we put up with a greedy Pull-based scheduling approach(GPSA) to solve the optimization problem. The evaluation shows GPSA can outperform two classical chunk scheduling approaches and adapt to dynamic variance of propagation delays.展开更多
In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and...In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and Distributed Hash Table(DHT) based P2P streaming system,called HQMedia,to provide high playback quality to users by maintaining high data dissemination resilience with a low overhead.In HQMedia,peers are classified into Super Peers(SP) and Common Peers(CP) according to their online time.SPs and CPs form a mesh structure,while SPs alone form a new Streaming DHT(SDHT) structure.In this hybrid architecture,we propose a joint scheduling and compensation mechanism.If any frames cannot be obtained during the scheduling phase,an SDHT-based compensation mechanism is invoked for retrieving the missing frames near the playback point.We evaluate the performance of HQMedia by both theoretical analysis and intensive simulation experiments on large-scale networks to demonstrate the effectiveness and scalability of the proposed system.Numerical results show that HQMedia significantly outperforms existing mesh-based and treebased P2P live streaming systems by improving playback quality with only less than 1% extra maintenance overhead.展开更多
基金Acknowledgements This work was supported by the Key Projects for Science and Technology Development under Caant No. 2009ZX03004-002 the National Natural Science Foundation of China under Gants No. 60833002, No. 60772142+1 种基金 the National Science and Technology Fundamental Project under Grant No. 2008ZX03003-005 the Science & Technology Research Project of Chongqing Education Committee under Crant No. KJ120825.
文摘Video data location plays a key role for Peer-to-Peer (P2P) live streaming applications. In this paper, we propose a new one-hop Distributed Hash Table (DHT) lookup frarrework called Strearre ing-DHT (SDHT) to provide efficient video data location service. By adopting an enhanced events dissemination mechanism-EDRA+, the accuracy of routing table at peers can be guaranteed. More importantly, in order to enhance the perforlmnce of video data lookup operation without incurring extra overhead, we design a so-called Distributed Index Mapping and Management Mechanism (DIMM) for SDHT. Both analytical modeling and intensive simulation experiments are conducted to demonstrate the effectiveness of SDHT framework. Numerical results show that almost 90% requested video data can be retrieved within one second in SDHT based systems, and SDHT needs only 26% average bandwidth consumption when compared with similar one-hop DHT solutions such as D1HT. This indicates that SDHT framework is an appropriate data lookup solution for time-sensitive network applications such as P2P live streaming.
基金supported by National Key Basic Research Program of China(973 Program)(2009CB320504)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 60821001)+1 种基金Beijing Municipal Commission of Education to build the project special,Research Fund for the Doctoral Program of Higher Education of China (20090005120012)National Natural Science Foundation (60672121)
文摘Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad delay performance. In this paper, we seek to improve the delay performance under ensuring video display quality stemming from chunk scheduling. And so we model Pull-based chunk scheduling problem as a multi-objective optimization problem to minimize the video delay and maximize video display quality in the environment of heterogeneous upload bandwidths, heterogeneous and dynamic propagation delays. Finally we put up with a greedy Pull-based scheduling approach(GPSA) to solve the optimization problem. The evaluation shows GPSA can outperform two classical chunk scheduling approaches and adapt to dynamic variance of propagation delays.
基金supported by the National Programs for Science and Technology under Grant No. 2009ZX03004-002the National Natural Science Foundation of China Major Project under Grant No. 60833002+2 种基金the National Natural Science Foundation of China under Grant No.60772142the National Science and Technology Major Projects under Grant No. 2008ZX03003-005the Science and Technology Research Project of Chongqing Education Commission under Grant No. KJ120825
文摘In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and Distributed Hash Table(DHT) based P2P streaming system,called HQMedia,to provide high playback quality to users by maintaining high data dissemination resilience with a low overhead.In HQMedia,peers are classified into Super Peers(SP) and Common Peers(CP) according to their online time.SPs and CPs form a mesh structure,while SPs alone form a new Streaming DHT(SDHT) structure.In this hybrid architecture,we propose a joint scheduling and compensation mechanism.If any frames cannot be obtained during the scheduling phase,an SDHT-based compensation mechanism is invoked for retrieving the missing frames near the playback point.We evaluate the performance of HQMedia by both theoretical analysis and intensive simulation experiments on large-scale networks to demonstrate the effectiveness and scalability of the proposed system.Numerical results show that HQMedia significantly outperforms existing mesh-based and treebased P2P live streaming systems by improving playback quality with only less than 1% extra maintenance overhead.