为简化前处理过程,降低方法的检出限,进行了题示研究。采集鱼塘底泥样品,混匀、缩分、冷冻干燥、除杂、研磨、过筛后混匀,分取5.00 g,加入10.0μg·L^(-1)^(13)C_(6)-氯硝柳胺水合物标准溶液0.2 m L和含2.0%(体积分数)氨水的乙腈溶...为简化前处理过程,降低方法的检出限,进行了题示研究。采集鱼塘底泥样品,混匀、缩分、冷冻干燥、除杂、研磨、过筛后混匀,分取5.00 g,加入10.0μg·L^(-1)^(13)C_(6)-氯硝柳胺水合物标准溶液0.2 m L和含2.0%(体积分数)氨水的乙腈溶液20 m L,涡旋1 min,超声10 min,离心8 min。上清液于45℃旋蒸至近干,加入2.00 m L 70%(体积分数)乙腈溶液涡旋溶解残留物,再加入200 mg C18涡旋振荡30 s,离心5 min。收集上清液,过0.22μm有机滤膜,滤液采用高效液相色谱-串联质谱法测定。在色谱分析中,以Waters Atiantis^(TM) d C_(18)色谱柱为固定相,水-乙腈体系为流动相进行梯度洗脱;在质谱分析中,以电喷雾离子源负离子(ESI-)模式电离,选择反应监测(SRM)模式检测,内标法定量。结果显示,氯硝柳胺的质量浓度在0.20~50.00μg·L^(-1)内和其定量离子峰面积与同位素内标定量离子峰面积的比值呈线性关系,检出限(3S/N)为0.2μg·kg^(-1)。按照标准加入法进行回收试验,回收率为92.1%~113%,测定值的相对标准偏差(n=6)为1.6%~5.9%。方法用于实际样品的分析,检出的氯硝柳胺的质量分数为0.580~2.18 mg·kg^(-1)。展开更多
针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及...针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及气体入口速度对熔池动力学的影响机制。研究表明:增大风口直径显著降低搅拌死区体积,扩展高湍动能区域覆盖范围,而提升气体入口速度可增强气泡上升区湍流强度。气体入口速度通过强化局部湍流促进熔池传质效率,风口直径变化可提升炉内混合均匀性。合理选择气体入口速度与风口直径可降低炉壁剪切应力峰值,抑制搅拌死区形成,为工业过程参数优化提供理论依据。展开更多
文摘为简化前处理过程,降低方法的检出限,进行了题示研究。采集鱼塘底泥样品,混匀、缩分、冷冻干燥、除杂、研磨、过筛后混匀,分取5.00 g,加入10.0μg·L^(-1)^(13)C_(6)-氯硝柳胺水合物标准溶液0.2 m L和含2.0%(体积分数)氨水的乙腈溶液20 m L,涡旋1 min,超声10 min,离心8 min。上清液于45℃旋蒸至近干,加入2.00 m L 70%(体积分数)乙腈溶液涡旋溶解残留物,再加入200 mg C18涡旋振荡30 s,离心5 min。收集上清液,过0.22μm有机滤膜,滤液采用高效液相色谱-串联质谱法测定。在色谱分析中,以Waters Atiantis^(TM) d C_(18)色谱柱为固定相,水-乙腈体系为流动相进行梯度洗脱;在质谱分析中,以电喷雾离子源负离子(ESI-)模式电离,选择反应监测(SRM)模式检测,内标法定量。结果显示,氯硝柳胺的质量浓度在0.20~50.00μg·L^(-1)内和其定量离子峰面积与同位素内标定量离子峰面积的比值呈线性关系,检出限(3S/N)为0.2μg·kg^(-1)。按照标准加入法进行回收试验,回收率为92.1%~113%,测定值的相对标准偏差(n=6)为1.6%~5.9%。方法用于实际样品的分析,检出的氯硝柳胺的质量分数为0.580~2.18 mg·kg^(-1)。
文摘针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及气体入口速度对熔池动力学的影响机制。研究表明:增大风口直径显著降低搅拌死区体积,扩展高湍动能区域覆盖范围,而提升气体入口速度可增强气泡上升区湍流强度。气体入口速度通过强化局部湍流促进熔池传质效率,风口直径变化可提升炉内混合均匀性。合理选择气体入口速度与风口直径可降低炉壁剪切应力峰值,抑制搅拌死区形成,为工业过程参数优化提供理论依据。