This study aimed to evaluate the effects of dietary yeast culture(YC)on lipopolysaccharide(LPS)-induced oxidative stress,immune and inflammatory response in P.ussuriensis.The fish were randomly assigned into three gro...This study aimed to evaluate the effects of dietary yeast culture(YC)on lipopolysaccharide(LPS)-induced oxidative stress,immune and inflammatory response in P.ussuriensis.The fish were randomly assigned into three groups as the control group,LPS group and YC+LPS group.The fish in the control were fed diet with no YC supplementation and no LPS challenge,and the fish in the LPS group or YC+LPS group were fed diet supplemented with no YC or 20 g·kg^(-1)YC,and with LPS challenge,respectively.The results showed that compared with the control group,intestinal total antioxidant capacity(T-AOC)level and superoxide dismutase(SOD)activity were significantly decreased,while intestinal malondialdehyde(MDA),plasma aspartate transaminase(AST)and alanine transaminase(ALT)levels were significantly increased in the LPS group(P<0.05).Besides,lower plasma alkaline phosphatase(ALP),alternative complement pathway(ACH50)activity and the albumin(ALB)level,as well as higher lysozyme(LZM)activity,were also found in the LPS group.However,dietary 20 g·kg^(-1)YC supplementation could relieve the above LPS-induced changes in Pseudobagrus ussuriensis.Furtherly,LPS challenge could significantly up-regulate gene expression of interleukin-8(IL-8),heat shock protein(HSP70)and NF-κBp65 except for toll-like receptors 2(TLR2),while dietary 20 g·kg^(-1)YC supplementation suppressed the increased expression of NF-κBp65 and IL-8 induced by LPS in P.ussuriensis.In summary,LPS challenge could induce immune impairment,oxidative stress and hepatic damage,and the protective effect of dietary 20 g·kg^(-1)YC supplementation on LPS-induced immune impairment and oxidative stress was observed in the present study,which was associated with the enhanced levels of antioxidant enzymes and immune parameters.Also,dietary 20 g·kg^(-1)YC supplementation could suppress LPS-induced inflammatory response by down-regulating NF-κBp65,HSP70 and IL-8 gene expression.展开更多
OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components...OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components were isolated from Derris laxiflora Benth.,In this study,we found these compounds from Derris laxiflora Benth suppress lipopolysaccharide-induced inflammatory response in murine macrophage(RAW 264.7)cells.METHODS RAW 264.7cells were cultured in DMEM media supplemented with 10%(V/V)heated-inactivated FBS,penicillin 100U·mL-1 and streptomycin 100μg·mL-1.The cells were incubated at 37℃in a humidified atmosphere of 5%CO2in air.RAW264.7cells were seeded in a 24-well plate at a density of 2×105 mL-1 and then incubated with or without LPS(100ng·mL-1)in the absence or presence of compounds for 24 h.Effects of these isolates on NO production were measured indirectly by analysis of nitrite levels using the Griess reaction.Quercetin was used as a positive control.RESULTS ight components were isolated from Derris laxiflora Benth.,including three new pterocarpans 7,6′-dihydroxy-3′-methoxypterocarpan(1),derrispisatin(2),derriscoumaronochromone(3)and three new flavonoids cis-3,4′-dihydroxy-5,7-dimethoxyflavan(4),derriflavanone B(5),iso-lupinenol(6)as well as two known ones,lonchocarpol A(7)and lonchocarpol D(8).The structures of these new compounds were determined by analysis of their spectroscopic data.Raw264.7 cells were treated with the compounds from Derris laxiflora Benth for 24 h.Among them,compounds 5,7 and 8 significantly suppressed the NO production in LPS-treated RAW264.7 cells with IC50 values<10μg·mL-1.CONCLUSION In this study,we found that compounds from Derris laxiflora Benth suppresses lipopolysaccharide-induced inflammatory response in murine Raw264.7 cells.展开更多
OBJECTIVE To evaluate the neuroprotective effects of 4 components from Uncaria rhynchophylla(297,307,315 and 327)on long-term potentiation(LTP)deficit in neuroinflammation animal model induced by lipopolysaccha⁃ride(L...OBJECTIVE To evaluate the neuroprotective effects of 4 components from Uncaria rhynchophylla(297,307,315 and 327)on long-term potentiation(LTP)deficit in neuroinflammation animal model induced by lipopolysaccha⁃ride(LPS).METHODS Male BALB/c 18-22 g mice were divided into control group,model group and component treat⁃ment group(1μg per mouse,icv);each group contained 5 mice,model group and compound treatment group were intra⁃peritoneally injected LPS(50μg·kg^-1,ip)4 h before LTP induction.LTP of perforant path-dentate gyrus pathway in hippo⁃campus was induced by high frequency stimulation and used to evaluate the effects on synaptic plasticity.RESULTS Compared with control group,the LTP of the model group was significantly impaired.Compound 297,327,and 307 could significantly improve LPS-induced LTP impairment.315 had no significant effect on LPS-induced LTP impairment.CONCLUSION Hippocampal synaptic plasticity could be impaired by LPS.Compounds 297,327 and 307 have protec⁃tive effects against LPS induced LTP impairment,and 315 has little effect on LPS induced LTP impairment.These re⁃sults suggested that 297,327 and 307 might have potential effects on neuroinflammation induced memory deficits.展开更多
OBJECTIVE Xiao-xu-ming decoction(XXMD),a well-known traditional Chinese herbal prescription,has been widely used to treat stroke.It is recorded in″Bei Ji Qian Jin Yao Fang″written by Si-miao Sun of the Chinese ancie...OBJECTIVE Xiao-xu-ming decoction(XXMD),a well-known traditional Chinese herbal prescription,has been widely used to treat stroke.It is recorded in″Bei Ji Qian Jin Yao Fang″written by Si-miao Sun of the Chinese ancient Tang Dynasty.In our previous study,the active fraction of XXMD(XXM)against cerebral ischemia has been prepared by modern separation and purification techniques.This study was to investigate XXM against lipopolysaccaride(LPS)-induced neuroinflammation in mice.METHODS LPS is an endotoxin from the outer membrane of Gram-negative bacteria that activates inflammation.XXM was pre-treated in BALB/C mice followed by injected intraperitoneally with LPS(5 mg·kg-1).The effects of XXM on LPS-induced pro-inflammatory factors and proteins were measured by ELISA,Western blot,and immunofluorescence in vivo.RESULTS Mice treated with XXM showed significantly decreased proinflammatory factors level,including IL-1β(P<0.01),IL-6(P<0.01),TNF-α(P<0.05),and MCP-1(P<0.01).Furthermore,XXM also significantly inhibited the inflammatory pathway proteins expression induced by LPS,including TLR4,MyD 88,and COX-2.CONCLUSION XXM possesses anti-neuroinflammation in mice and might be a promising therapeutic agent for stroke.展开更多
OBJECTIVE To establish an in vitro inflammatory model of BV2 by observing the activity,the release amount of NO and the expression of inflammatory factors of microglial cells(BV2)induced by lipopolysaccharides(LPS).ME...OBJECTIVE To establish an in vitro inflammatory model of BV2 by observing the activity,the release amount of NO and the expression of inflammatory factors of microglial cells(BV2)induced by lipopolysaccharides(LPS).METHODS BV2 was routinely cultured in vitro.Cell viability was measured by CCK-8 meth⁃od.And by drew cell growth curve to determine the logarithmic growth cycle of the cells.After 24 h of routine culture,BV2 were induced by adding different concentrations of LPS(0.1,1.0 and 10.0 mg·L-1)for 4,8,12,24 and 48 h,respectively.Meanwhile,the morphological changes of BV2 were observed under inverted microscope to compare the activation degree of microglia at dif⁃ferent time and concentration.Cell activity and nitric oxide(NO)level were determined by CCK-8 and Griess method respectively,which could help to determine the optimal concentration and time of modeling.Finally,It were determined by ELISA that the concentrations of tumor necrosis factorα(TNF-α),interleukin-6(IL-6)and IL-1βin supernatant of LPS 1 mg·L-1 culture for 24 h.RESULTS BV2 were in logarithmic growth phase for 1 to 3 d after subculture.LPS 1 mg·L-1 induced BV2 for 24 or 48 h which could increase the release amount of NO significantly(P<0.05).In order to save time,LPS induced BV2 for 24 h were selected for subsequent experiments.Microglial cells in resting state were observed to be elongated spindle shape under inverted micro⁃scope.After LPS activation,the cell body became larger and the branching processes shrank back,presenting an amoeba-like appearance.ELISA results showed that the concentrations of TNF-α,IL-6 and IL-1βin supernatant of LPS 1 mg·L-1 cultured for 24 h were significantly increased which compared with the control group(P<0.05).CONCLUSION LPS could induce the activation of BV2 and up-regulate the level of inflammatory factors.The optimal condition for establishing stable BV2 microglial inflammatory model was used LPS 1 g·L-1 induced for 24 h.展开更多
Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have s...Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have shown that endothelial activation contributes to the pathophysiology of cardiovascular diseases such as atherosclero- sis, diabetic vasculopathy, heart failure and hypertension. In the present study, the effects of MLB on endothelial activation were investigated. Lipopolysaccharide (LPS) 1 mg L^-1 was employed to induce endothelial activation, which was determined by relative gene expression and endothelial adhesion assay. Results showed that pretreatment with MLB attenuated LPS-induced ICAM1, VCAM1 and TNF-α upregulation in human dermal microvascular endo- thelial cells (HMEC-1) in dose-dependent manner, which contributed to the reduction of THP-1 adhesion to HMEC-1. Furthermore, it was revealed that 100 μmol · L^-1 MLB significantly decreased the nuclear translocation of NF-KB p65, a critical transcription factor in LPS-indueed inflammatory response, through the inhibition of IKBμ degradation. Besides, the transcriptional activity of NF-KB p65 was also inhibited by the pretreatment of MLB. Mo- reover, MLB pretreatment considerably inhibited LPS-induced p38 phosphorylation, which at least partly contribu- ted to the reduction of ICAM1 expression. In conclusion, these findings suggest that MLB inhibits LPS-induced nu- clear translocation and transcripitional activity of NF-KB, thus attenuates the increased expression of adhesion mole- cules and inflammatory factors, protects endothelial cells from LPS-induced activation.展开更多
The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(...The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(LPS)at the concentration of 10 mg·kg^-1 (10 mg LPS dissolved in 1 mL normal saline to prepare 1 mL·kg^-1solution)in rats.The control group(CG)was intraperitoneally injected with saline of the same dose.In the LPS group,lung tissues were collected at 4,6,8,12 and 24 h after administration.Then,the morphology changes,the ratio of wet-to-dry weight(W/D),the expression of interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α)proteins,the levels of malondialdehyde(MDA),the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH)were measured.To verify the success of the model,the degrees of lung injury via Western blot,RT-PCR,ELISA and other techniques were detected at different time points,and the severe time of the ALI model established was deterimined by intraperitoneal administration,which provided a stable model basis for the study of the pathogenesis of ALI in the future.The results showed that the lung injury occurred in LPS group.W/D and lung pathological changes at 12 and 24 h of LPS group were significantly different from those in the CG.Compared with the CG,the expression of IL-1βand TNF-αproteins and the content of MDA in lung tissues of LPS group increased and most significant difference was found at 12 and 24 h(p<0.01).Compared with the CG,the activities of SOD and GSH in LPS 12 h group decreased significantly(p<0.01).In conclusion,inflammation and oxidative damage were the main causes of the ALI in rats.Lung injury was most obvious 12 h after intraperitoneal injection of 10 mg·kg^-1 LPS.展开更多
基金Supported by the Special Fund for Beijing Enhalor Bio-Tech Co.,Ltd.the Open Fund for National Engineering Research Laboratory of Marine Biotechnology and Engineering,Ningbo Universitythe Entrepreneurship Trainning Project of SIPT Program of Northeast Agricultural University(202310224129S)。
文摘This study aimed to evaluate the effects of dietary yeast culture(YC)on lipopolysaccharide(LPS)-induced oxidative stress,immune and inflammatory response in P.ussuriensis.The fish were randomly assigned into three groups as the control group,LPS group and YC+LPS group.The fish in the control were fed diet with no YC supplementation and no LPS challenge,and the fish in the LPS group or YC+LPS group were fed diet supplemented with no YC or 20 g·kg^(-1)YC,and with LPS challenge,respectively.The results showed that compared with the control group,intestinal total antioxidant capacity(T-AOC)level and superoxide dismutase(SOD)activity were significantly decreased,while intestinal malondialdehyde(MDA),plasma aspartate transaminase(AST)and alanine transaminase(ALT)levels were significantly increased in the LPS group(P<0.05).Besides,lower plasma alkaline phosphatase(ALP),alternative complement pathway(ACH50)activity and the albumin(ALB)level,as well as higher lysozyme(LZM)activity,were also found in the LPS group.However,dietary 20 g·kg^(-1)YC supplementation could relieve the above LPS-induced changes in Pseudobagrus ussuriensis.Furtherly,LPS challenge could significantly up-regulate gene expression of interleukin-8(IL-8),heat shock protein(HSP70)and NF-κBp65 except for toll-like receptors 2(TLR2),while dietary 20 g·kg^(-1)YC supplementation suppressed the increased expression of NF-κBp65 and IL-8 induced by LPS in P.ussuriensis.In summary,LPS challenge could induce immune impairment,oxidative stress and hepatic damage,and the protective effect of dietary 20 g·kg^(-1)YC supplementation on LPS-induced immune impairment and oxidative stress was observed in the present study,which was associated with the enhanced levels of antioxidant enzymes and immune parameters.Also,dietary 20 g·kg^(-1)YC supplementation could suppress LPS-induced inflammatory response by down-regulating NF-κBp65,HSP70 and IL-8 gene expression.
基金The project supported by Department of Industrial Technology,Ministry of Economic Affairs,Chinese TaipeiMedical and Pharmaceutical Industry Technology and Development Center
文摘OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components were isolated from Derris laxiflora Benth.,In this study,we found these compounds from Derris laxiflora Benth suppress lipopolysaccharide-induced inflammatory response in murine macrophage(RAW 264.7)cells.METHODS RAW 264.7cells were cultured in DMEM media supplemented with 10%(V/V)heated-inactivated FBS,penicillin 100U·mL-1 and streptomycin 100μg·mL-1.The cells were incubated at 37℃in a humidified atmosphere of 5%CO2in air.RAW264.7cells were seeded in a 24-well plate at a density of 2×105 mL-1 and then incubated with or without LPS(100ng·mL-1)in the absence or presence of compounds for 24 h.Effects of these isolates on NO production were measured indirectly by analysis of nitrite levels using the Griess reaction.Quercetin was used as a positive control.RESULTS ight components were isolated from Derris laxiflora Benth.,including three new pterocarpans 7,6′-dihydroxy-3′-methoxypterocarpan(1),derrispisatin(2),derriscoumaronochromone(3)and three new flavonoids cis-3,4′-dihydroxy-5,7-dimethoxyflavan(4),derriflavanone B(5),iso-lupinenol(6)as well as two known ones,lonchocarpol A(7)and lonchocarpol D(8).The structures of these new compounds were determined by analysis of their spectroscopic data.Raw264.7 cells were treated with the compounds from Derris laxiflora Benth for 24 h.Among them,compounds 5,7 and 8 significantly suppressed the NO production in LPS-treated RAW264.7 cells with IC50 values<10μg·mL-1.CONCLUSION In this study,we found that compounds from Derris laxiflora Benth suppresses lipopolysaccharide-induced inflammatory response in murine Raw264.7 cells.
基金Open Fund from the State Key Laboratory of Phytochemistry and Plant Resources in West China(P2017-KF13)National Science and Technology Major Project of China(2016ZX09J16104)
文摘OBJECTIVE To evaluate the neuroprotective effects of 4 components from Uncaria rhynchophylla(297,307,315 and 327)on long-term potentiation(LTP)deficit in neuroinflammation animal model induced by lipopolysaccha⁃ride(LPS).METHODS Male BALB/c 18-22 g mice were divided into control group,model group and component treat⁃ment group(1μg per mouse,icv);each group contained 5 mice,model group and compound treatment group were intra⁃peritoneally injected LPS(50μg·kg^-1,ip)4 h before LTP induction.LTP of perforant path-dentate gyrus pathway in hippo⁃campus was induced by high frequency stimulation and used to evaluate the effects on synaptic plasticity.RESULTS Compared with control group,the LTP of the model group was significantly impaired.Compound 297,327,and 307 could significantly improve LPS-induced LTP impairment.315 had no significant effect on LPS-induced LTP impairment.CONCLUSION Hippocampal synaptic plasticity could be impaired by LPS.Compounds 297,327 and 307 have protec⁃tive effects against LPS induced LTP impairment,and 315 has little effect on LPS induced LTP impairment.These re⁃sults suggested that 297,327 and 307 might have potential effects on neuroinflammation induced memory deficits.
基金The project supported by National Natural Science Foundation of China(81473383,81573645)
文摘OBJECTIVE Xiao-xu-ming decoction(XXMD),a well-known traditional Chinese herbal prescription,has been widely used to treat stroke.It is recorded in″Bei Ji Qian Jin Yao Fang″written by Si-miao Sun of the Chinese ancient Tang Dynasty.In our previous study,the active fraction of XXMD(XXM)against cerebral ischemia has been prepared by modern separation and purification techniques.This study was to investigate XXM against lipopolysaccaride(LPS)-induced neuroinflammation in mice.METHODS LPS is an endotoxin from the outer membrane of Gram-negative bacteria that activates inflammation.XXM was pre-treated in BALB/C mice followed by injected intraperitoneally with LPS(5 mg·kg-1).The effects of XXM on LPS-induced pro-inflammatory factors and proteins were measured by ELISA,Western blot,and immunofluorescence in vivo.RESULTS Mice treated with XXM showed significantly decreased proinflammatory factors level,including IL-1β(P<0.01),IL-6(P<0.01),TNF-α(P<0.05),and MCP-1(P<0.01).Furthermore,XXM also significantly inhibited the inflammatory pathway proteins expression induced by LPS,including TLR4,MyD 88,and COX-2.CONCLUSION XXM possesses anti-neuroinflammation in mice and might be a promising therapeutic agent for stroke.
基金Natural science foundation of Hebei Province(H2020405298)。
文摘OBJECTIVE To establish an in vitro inflammatory model of BV2 by observing the activity,the release amount of NO and the expression of inflammatory factors of microglial cells(BV2)induced by lipopolysaccharides(LPS).METHODS BV2 was routinely cultured in vitro.Cell viability was measured by CCK-8 meth⁃od.And by drew cell growth curve to determine the logarithmic growth cycle of the cells.After 24 h of routine culture,BV2 were induced by adding different concentrations of LPS(0.1,1.0 and 10.0 mg·L-1)for 4,8,12,24 and 48 h,respectively.Meanwhile,the morphological changes of BV2 were observed under inverted microscope to compare the activation degree of microglia at dif⁃ferent time and concentration.Cell activity and nitric oxide(NO)level were determined by CCK-8 and Griess method respectively,which could help to determine the optimal concentration and time of modeling.Finally,It were determined by ELISA that the concentrations of tumor necrosis factorα(TNF-α),interleukin-6(IL-6)and IL-1βin supernatant of LPS 1 mg·L-1 culture for 24 h.RESULTS BV2 were in logarithmic growth phase for 1 to 3 d after subculture.LPS 1 mg·L-1 induced BV2 for 24 or 48 h which could increase the release amount of NO significantly(P<0.05).In order to save time,LPS induced BV2 for 24 h were selected for subsequent experiments.Microglial cells in resting state were observed to be elongated spindle shape under inverted micro⁃scope.After LPS activation,the cell body became larger and the branching processes shrank back,presenting an amoeba-like appearance.ELISA results showed that the concentrations of TNF-α,IL-6 and IL-1βin supernatant of LPS 1 mg·L-1 cultured for 24 h were significantly increased which compared with the control group(P<0.05).CONCLUSION LPS could induce the activation of BV2 and up-regulate the level of inflammatory factors.The optimal condition for establishing stable BV2 microglial inflammatory model was used LPS 1 g·L-1 induced for 24 h.
文摘Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have shown that endothelial activation contributes to the pathophysiology of cardiovascular diseases such as atherosclero- sis, diabetic vasculopathy, heart failure and hypertension. In the present study, the effects of MLB on endothelial activation were investigated. Lipopolysaccharide (LPS) 1 mg L^-1 was employed to induce endothelial activation, which was determined by relative gene expression and endothelial adhesion assay. Results showed that pretreatment with MLB attenuated LPS-induced ICAM1, VCAM1 and TNF-α upregulation in human dermal microvascular endo- thelial cells (HMEC-1) in dose-dependent manner, which contributed to the reduction of THP-1 adhesion to HMEC-1. Furthermore, it was revealed that 100 μmol · L^-1 MLB significantly decreased the nuclear translocation of NF-KB p65, a critical transcription factor in LPS-indueed inflammatory response, through the inhibition of IKBμ degradation. Besides, the transcriptional activity of NF-KB p65 was also inhibited by the pretreatment of MLB. Mo- reover, MLB pretreatment considerably inhibited LPS-induced p38 phosphorylation, which at least partly contribu- ted to the reduction of ICAM1 expression. In conclusion, these findings suggest that MLB inhibits LPS-induced nu- clear translocation and transcripitional activity of NF-KB, thus attenuates the increased expression of adhesion mole- cules and inflammatory factors, protects endothelial cells from LPS-induced activation.
基金Supported by the National Key Research and Development Program of China(2016YED0501008)the National Natural Science Foundation of China(31772806)the Natural Science Foundation of Heilongjiang Province(C2017022)。
文摘The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(LPS)at the concentration of 10 mg·kg^-1 (10 mg LPS dissolved in 1 mL normal saline to prepare 1 mL·kg^-1solution)in rats.The control group(CG)was intraperitoneally injected with saline of the same dose.In the LPS group,lung tissues were collected at 4,6,8,12 and 24 h after administration.Then,the morphology changes,the ratio of wet-to-dry weight(W/D),the expression of interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α)proteins,the levels of malondialdehyde(MDA),the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH)were measured.To verify the success of the model,the degrees of lung injury via Western blot,RT-PCR,ELISA and other techniques were detected at different time points,and the severe time of the ALI model established was deterimined by intraperitoneal administration,which provided a stable model basis for the study of the pathogenesis of ALI in the future.The results showed that the lung injury occurred in LPS group.W/D and lung pathological changes at 12 and 24 h of LPS group were significantly different from those in the CG.Compared with the CG,the expression of IL-1βand TNF-αproteins and the content of MDA in lung tissues of LPS group increased and most significant difference was found at 12 and 24 h(p<0.01).Compared with the CG,the activities of SOD and GSH in LPS 12 h group decreased significantly(p<0.01).In conclusion,inflammation and oxidative damage were the main causes of the ALI in rats.Lung injury was most obvious 12 h after intraperitoneal injection of 10 mg·kg^-1 LPS.