This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented ba...The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required.展开更多
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor...This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results.展开更多
Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of th...Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.展开更多
Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matric...Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.展开更多
A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity. The ...A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity. The measured wave plate is located in the external cavity. When the length of the external cavity is tuned, the polarization states of laser will flip between two eigenstates, and the position of polarization flipping in one period of intensity modulation will vary with retardation of the wave plate. The duty ratio of two eigenstates is used to determine the retardation. Main advantages of the technique are that it is compact, low cost, fast and flexible. Especially, it is insensitive to a fluctuation of laser intensity and is suitable for on-line measurement. The experimental results have shown that the measurement uncertainty is better than 0.03° in the range 30°-150°.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaoti...This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T-S fuzzy model of the chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.展开更多
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through line...This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, hut also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.展开更多
A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. Th...A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. This LINAC consists of five main parts: a thermal cathode grid-controlled electron gun, a pre-buncher, a variable-phase-velocity buncher, a light-speed accelerating structure, and a high-power transportation beamline. A digital feedforward radio frequency compensator is adopted to reduce the energy spread caused by the transient beam loading effect. Furthermore, a real-time electron gun emission feedback algorithm is used to keep the beam stable. After months of efforts, all the beam parameters successfully met the requirements of the facility. In this paper, the beam commissioning process and performance of the LINAC are presented.展开更多
Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators ...Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.展开更多
The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such t...The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.展开更多
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.
文摘The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 70571030 and 90610031)the Advanced Talents’ Foundation of Jiangsu University of China (Grant No 07JDG054)
文摘This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results.
基金Supported by the National Natural Science Foundation of China(5137504651205021)the Basic Research Foundation of Beijing Institute of Technology(20120342002)
文摘Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.
文摘Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.
基金Supported by the National Natural Science Foundation of China under Grant No 60438010.
文摘A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity. The measured wave plate is located in the external cavity. When the length of the external cavity is tuned, the polarization states of laser will flip between two eigenstates, and the position of polarization flipping in one period of intensity modulation will vary with retardation of the wave plate. The duty ratio of two eigenstates is used to determine the retardation. Main advantages of the technique are that it is compact, low cost, fast and flexible. Especially, it is insensitive to a fluctuation of laser intensity and is suitable for on-line measurement. The experimental results have shown that the measurement uncertainty is better than 0.03° in the range 30°-150°.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60375001), the Hunan Province Natural Science Foundation, China (Grant No 03JJY3107) and the Scientific Research Funds of Hunan Provincial Education Department, China (Grant No 05B016).
文摘This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T-S fuzzy model of the chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.
基金Project supported by the National Natural Science Foundation of China (Grant No.60850004)the Funds for Creative Research Talents of Henan Education Bureau,China (Grant No.2009HASTIT021)+3 种基金the Natural Science Foundation of Henan Education Bureau,China (Grant No.2008A120005)Fundamental & Frontier Technology Research Planning Project of Henan Province,China (Grant No.072300460050)Doctorate Program of Henan Polytechnic University (Grant No.648606)Young Teacher Key Talents Program of Henan Polytechnic University (Grant No.649033)
文摘This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, hut also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.
基金supported by the Youth Innovation Promotion Association CAS(No.2018300)
文摘A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. This LINAC consists of five main parts: a thermal cathode grid-controlled electron gun, a pre-buncher, a variable-phase-velocity buncher, a light-speed accelerating structure, and a high-power transportation beamline. A digital feedforward radio frequency compensator is adopted to reduce the energy spread caused by the transient beam loading effect. Furthermore, a real-time electron gun emission feedback algorithm is used to keep the beam stable. After months of efforts, all the beam parameters successfully met the requirements of the facility. In this paper, the beam commissioning process and performance of the LINAC are presented.
基金Sponsored by the Doctoral Fund of Ministry of Education of China(20070288022)the Natural Science Foundation of Jiangsu Province of China(BK2008404)the Young Teacher Academic Foundation of Nanjing University of Technology(39710013)
文摘Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.
基金Sponsored by the Ministerial Level Advanced Research Foundation (G423BQ0110)
文摘The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.