针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩...针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。展开更多
针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通...针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通过和LMMSE算法对比,该改进LMMSE的计算复杂度相比LMMSE算法已大大地降低,在配电网信道估计的时间上节省8 s,大大缩短了信道估计的时间。展开更多
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix fact...Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly. A new sequential processing method, which carries out the sequential updates directly using the correlated measurement components, is proposed. And a typical sequential processing example is investigated, where the converted position measure- ments are used to estimate target states by standard Kalman filtering equations and the converted Doppler measurements are then incorporated into a minimum mean squared error (MMSE) estimator with the updated cross-covariance involved to account for the correlated errors. Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filter based on measurement decorrelation.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。
文摘针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通过和LMMSE算法对比,该改进LMMSE的计算复杂度相比LMMSE算法已大大地降低,在配电网信道估计的时间上节省8 s,大大缩短了信道估计的时间。
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
基金Supported by National Natural Science Foundation of China (61135001, 61075029, 61074179, 61074155) and the Postdoctoral Science Foundation of China (20110491692)
基金supported by the National Natural Science Foundation of China(6120131161132005)the Aerospace Science Foundation of China(20142077010)
文摘Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly. A new sequential processing method, which carries out the sequential updates directly using the correlated measurement components, is proposed. And a typical sequential processing example is investigated, where the converted position measure- ments are used to estimate target states by standard Kalman filtering equations and the converted Doppler measurements are then incorporated into a minimum mean squared error (MMSE) estimator with the updated cross-covariance involved to account for the correlated errors. Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filter based on measurement decorrelation.
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.