A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩...针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis show...The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.展开更多
Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak sig...Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.展开更多
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the con...Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the constant modulus criterion and takes full advantage of the noncircular property of the signal of interest (SOI), significantly increasing the output signal-to interference-plus-noise ratio (SINR), enhancing the convergence speed and decreasing the steady-state misadjustment. Since it requires no known training data, the proposed algorithm saves a large amount of the available spectrum. Theoretical analysis and simulation results are presented to demonstrate its superiority over the conventional linear least mean square-based CMA (L-LMS-CMA), the conventional linear recursive least square-based CMA (L-RLS-CMA), WL-LMS-CMA, WL-RLS-CMA and L-UKF-CMA.展开更多
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
文摘针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
文摘The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
基金supported by the National Natural Science Foundation for Young Scientists of China(61201190)
文摘Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
基金supported by the National Natural Science Foundation of China(61573113)the Harbin Science and Technology Innovation Talents(Excellent Discipline Leader)Research Fund(2014RFXXJ074)the National Scholarship([2016]3100)
文摘Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the constant modulus criterion and takes full advantage of the noncircular property of the signal of interest (SOI), significantly increasing the output signal-to interference-plus-noise ratio (SINR), enhancing the convergence speed and decreasing the steady-state misadjustment. Since it requires no known training data, the proposed algorithm saves a large amount of the available spectrum. Theoretical analysis and simulation results are presented to demonstrate its superiority over the conventional linear least mean square-based CMA (L-LMS-CMA), the conventional linear recursive least square-based CMA (L-RLS-CMA), WL-LMS-CMA, WL-RLS-CMA and L-UKF-CMA.