期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
1
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (lda multi-label classification dimensionality reduction
在线阅读 下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
2
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(lda) 支持向量机(SVM)
在线阅读 下载PDF
多源数据融合的焊接质量监测技术
3
作者 张发平 孙昊 +1 位作者 魏剑峰 宋紫阳 《北京理工大学学报》 北大核心 2025年第5期471-481,共11页
针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并... 针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并将这些特征值与焊接的熔池图像特征值结合,构成焊接质量的原始特征空间;然后采用线性判别方法,降维形成焊接信息的低维特征空间;最后,使用孤立森林法筛选邻域搜索空间,并将该邻域搜索空间中的焊接数据点划分为多个重叠子集.采用局部离群因子法对新数据点在多个重叠子集中进行邻域搜索,对焊接过程进行异常检测,该方法充分考虑了焊接质量数据的全局特征并且计算复杂度大为降低.最后,采用基于人工蜂群算法优化的概率神经网络进行焊接质量数据的精确细分和异常的精准识别,该方法增强了全局搜索能力,同时避免陷入局部最优.试验验证结果显示所提方法都焊接异常的检测精度可达97.44%,对综合焊接异常的识别精度可达96.03%,证明了方法的有效性. 展开更多
关键词 隐性焊接异常 多源数据 局部离群因子 概率神经网络 线性判别方法 人工蜂群算法
在线阅读 下载PDF
一种稳健的基于VisemicLDA的口形动态特征及听视觉语音识别 被引量:4
4
作者 谢磊 付中华 +4 位作者 蒋冬梅 赵荣椿 Werner Verhelst Hichem Sahli Jan Conlenis 《电子与信息学报》 EI CSCD 北大核心 2005年第1期64-68,共5页
视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。... 视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。这种方法免去了繁重的人工标注工作,避免了标注错误。实验表明,将'VisemicLDA视觉特征引入到听视觉语音识别中,可以大大地提高噪声条件下语音识别系统的识别率;将这种视觉特征与多数据流HMM结合之后,在信噪比为10dB的强噪声情况下,识别率仍可以达到80%以上。 展开更多
关键词 语音识别 听视觉语音识别 ASM linear DISCRIMINANT analysis(lda) Viseme
在线阅读 下载PDF
基于粒子群算法的LDA实现方法研究 被引量:8
5
作者 钟伟 黄元亮 +1 位作者 郝真真 姜甜甜 《计算机工程与应用》 CSCD 北大核心 2017年第1期39-43,共5页
针对传统线性判别分析方法存在的问题,在研究现有理论成果的基础上,提出一种新的LDA实现方法。该方法首先对原有的Fisher准则进行修正,然后通过迭代搜寻最佳鉴别矢量,最后对获取的鉴别矢量进行比较分析。在标准的JAFFE人脸库上的表情识... 针对传统线性判别分析方法存在的问题,在研究现有理论成果的基础上,提出一种新的LDA实现方法。该方法首先对原有的Fisher准则进行修正,然后通过迭代搜寻最佳鉴别矢量,最后对获取的鉴别矢量进行比较分析。在标准的JAFFE人脸库上的表情识别和地区综合消费水平的评价中的实验结果表明,此算法不仅具有良好的识别效果而且还可以突破样本维数的限制;与其他LDA算法相比,该算法更具灵活性且更易于实现。 展开更多
关键词 线性判别式分析 投影矢量 离散度矩阵 粒子群算法 PSO-lda算法
在线阅读 下载PDF
基于优化的LDA算法人脸识别研究 被引量:26
6
作者 庄哲民 张阿妞 李芬兰 《电子与信息学报》 EI CSCD 北大核心 2007年第9期2047-2049,共3页
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩... 提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 展开更多
关键词 线性判别分析(lda) 人脸识别 类间离散度 类内离散度 特征提取
在线阅读 下载PDF
基于集成学习的规范化LDA人脸识别 被引量:6
7
作者 张燕平 窦蓉蓉 +1 位作者 赵姝 曹振田 《计算机工程》 CAS CSCD 北大核心 2010年第14期144-146,共3页
针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高... 针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。 展开更多
关键词 人脸识别 规范化线性鉴别分析 集成学习
在线阅读 下载PDF
LDA与LSD相结合的车道线分类检测算法 被引量:13
8
作者 郭克友 王艺伟 郭晓丽 《计算机工程与应用》 CSCD 北大核心 2017年第24期219-225,共7页
提出一种车道线分类检测算法。首先采用LDA对道路图像进行有针对性的灰度化,以便更好地区分车道线与道路。采用LSD算法检测灰度图像中的直线部分并确定车道线的方向。在此基础上,选取符合车道线灰度范围内的像素点。对远距离的像素点采... 提出一种车道线分类检测算法。首先采用LDA对道路图像进行有针对性的灰度化,以便更好地区分车道线与道路。采用LSD算法检测灰度图像中的直线部分并确定车道线的方向。在此基础上,选取符合车道线灰度范围内的像素点。对远距离的像素点采用抛物线拟合,近距离的像素点采用直线拟合。同时,将检测到的车道线进行虚线实线的分类标记。最后结合视频序列的连续性对检测结果进行反向验证。实验结果证明,提出的方法对直道弯道检测均有很好的效果。算法的处理速度为每秒10帧左右,采用的测试视频的帧率为每秒15帧,基本满足实时性的要求。 展开更多
关键词 线性判别分析(lda) 线段检测器(LSD) 直线-抛物线模型 车道线分类 视频序列连续性
在线阅读 下载PDF
基于PLS-LDA和拉曼光谱快速定性识别食用植物油 被引量:17
9
作者 吴静珠 石瑞杰 +2 位作者 陈岩 刘翠玲 徐云 《食品工业科技》 CAS CSCD 北大核心 2014年第6期55-58,共4页
以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变... 以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变量消除法筛选波长变量,不但有效减少了波长点数,降低了建模运算量,而且提高了单一种类食用油的识别率,使得总体识别率均高于90%,并在此基础上进一步提出了采用PLS-LDA进行多种类食用油识别的检测流程。实验结果表明PLS-LDA在食用油定性识别检测中具有较好的应用前景和可行性,该方法也可为定性检测食品及农产品品质提供借鉴。 展开更多
关键词 偏最小二乘线性判别分析法 拉曼光谱 食用植物油 蒙特卡洛无信息变量消除法
在线阅读 下载PDF
直接LDA在人脸识别中的鉴别力分析 被引量:7
10
作者 赵武锋 沈海斌 严晓浪 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1479-1483,共5页
直接线性鉴别分析(DLDA)曾被声明利用类内离散矩阵零空间内外所有鉴别信息,为了分析声明的理论缺陷,对DLDA在人脸识别中的鉴别特性进行了研究.鉴于DLDA是在类间离散矩阵列空间中寻找最优解,理论分析从下面3方面内容展开:类间和类内离散... 直接线性鉴别分析(DLDA)曾被声明利用类内离散矩阵零空间内外所有鉴别信息,为了分析声明的理论缺陷,对DLDA在人脸识别中的鉴别特性进行了研究.鉴于DLDA是在类间离散矩阵列空间中寻找最优解,理论分析从下面3方面内容展开:类间和类内离散矩阵的列空间之间的关系、类间离散矩阵列空间与类内离散矩阵零空间的关系以及在保留全部鉴别矢量下的DLDA特性,结果表明,在小样本条件下,DLDA几乎没利用零空间内的信息,导致一些有用的鉴别信息的丢失;若保留全部的鉴别矢量,DLDA退化为类间离散矩阵的保留所有非零成分的主成分分析.在人脸数据库ORL和YALE上的比较实验结果显示:DLDA的识别率都次于其它几种线性鉴别分析扩展方法,与理论分析一致. 展开更多
关键词 人脸识别 主成分分析 线性鉴别分析 直接线性鉴别分析 小样本
在线阅读 下载PDF
利用标准化LDA进行人脸识别 被引量:22
11
作者 余冰 金连甫 陈平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第3期302-306,共5页
线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变... 线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变权函数 ,使得在选择投影方向时 ,能够更好地分开各个类的样本 ;同时 ,它采用一种合理而有效的方法解决矩阵奇异的问题 ,即保留样本类内离散度矩阵的零空间 ,因为这个空间包含了最具有判别能力的信息 在这个零空间里 ,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵 实验结果显示 ,在人脸识别中 ,与传统LDA方法相比 ,该方法有更好的识别率 展开更多
关键词 线性判别分析(lda) 样本类间离散度 样本类内离散度 小样本集合问题 边缘类
在线阅读 下载PDF
基于LDA的表面肌电信号分类研究 被引量:7
12
作者 马正华 乔玉涛 +1 位作者 李雷 戎海龙 《计算机工程与科学》 CSCD 北大核心 2016年第11期2321-2327,共7页
研究了一种基于LDA分类器的模式识别方法,比较了五种特征参数组合方式,分析了无关联线性判别分析ULDA和PCA两种降维方法,通道数量和窗口长度对肌电信号分类的影响,最后应用LDA分类器对降维后的数据进行分类。实验结果表明:均方根和四阶A... 研究了一种基于LDA分类器的模式识别方法,比较了五种特征参数组合方式,分析了无关联线性判别分析ULDA和PCA两种降维方法,通道数量和窗口长度对肌电信号分类的影响,最后应用LDA分类器对降维后的数据进行分类。实验结果表明:均方根和四阶AR系数两种特征组合在4通道和8通道下的准确率分别可以达到90%和96%,增加通道数量或特征数量可以进一步提高准确率;通过ULDA将特征矢量的维数降低到6维时,仍可以保证较高的准确率;6种手势的识别率超过了94%,其中4种手超过了97%,分类出错的窗口主要集中在过渡阶段。 展开更多
关键词 表面肌电 无关联线性判别分析 线性判别式分析
在线阅读 下载PDF
在DCT域进行LDA的唇读特征提取方法 被引量:5
13
作者 何俊 张华 刘继忠 《计算机工程与应用》 CSCD 北大核心 2009年第32期150-152,155,共4页
为解决视觉语言特征提取这个唇读技术中最关键的难题,提出一种新的基于DCT和LDA的特征提取方法。为提取对不同口型最具分类能力的特征矢量,首先基于DCT对视觉语言部位变换降维,然后基于LDA算法从DCT系数提取对口型分类性能最优的特征矢... 为解决视觉语言特征提取这个唇读技术中最关键的难题,提出一种新的基于DCT和LDA的特征提取方法。为提取对不同口型最具分类能力的特征矢量,首先基于DCT对视觉语言部位变换降维,然后基于LDA算法从DCT系数提取对口型分类性能最优的特征矢量。在特定人与非特定人的唇读数据库上以及实时唇读识别的实验都表明,该方法唇读识别率比传统的人工直接选择DCT系数法以及PCA提取法有明显提高。 展开更多
关键词 唇读 特征提取 离散余弦变换(DCT) 线性判别分析(lda)
在线阅读 下载PDF
基于小波变换和LDA/FKT及SVM的人耳识别 被引量:13
14
作者 赵海龙 穆志纯 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2273-2278,共6页
人耳识别技术是生物特征识别和人工智能领域的一个重要分支。针对人耳图像自身的特点并通过对现有方法的研究,本文提出了一种新的人耳识别方法,即先对人耳图像进行二维的离散小波分解,然后使用LDA/FKT算法对小波分解后得到的低频信息进... 人耳识别技术是生物特征识别和人工智能领域的一个重要分支。针对人耳图像自身的特点并通过对现有方法的研究,本文提出了一种新的人耳识别方法,即先对人耳图像进行二维的离散小波分解,然后使用LDA/FKT算法对小波分解后得到的低频信息进行降维,进而获得图像的特征向量,最后采用支持向量机作为分类器对样本向量进行判别。实验证明,本文提出的方法不仅较好地解决了人耳识别中的小样本问题,而且还取得了比传统的PCA+LDA方法更高的识别率,是一种有效的人耳识别方法。 展开更多
关键词 人耳识别 小波变换 线性判别分析 lda/FKT 支持向量机
在线阅读 下载PDF
基于KPCA和LDA的信号调制识别 被引量:11
15
作者 周欣 吴瑛 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1611-1616,共6页
对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle componentanalysis,KPCA)和线性判别(linear discriminant analysis,LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征... 对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle componentanalysis,KPCA)和线性判别(linear discriminant analysis,LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征参数进行主分量组合,以消除信号特征间的相关性和压缩特征向量的维数,然后利用LDA分类器进行信号调制方式的自动识别。仿真表明,在一个较大的信噪比范围内当特征非线性可分时,KPCA在特征选择方面性能更优,且基于KPCA+LDA的识别方法精度高于主分量分析(principle componentanalysis,PCA)+模板匹配算法。通过分析还可得出,KPCA+LDA等价于基于核的Fisher判别分析(kernelFisher discriminant analysis,KFDA)方法。 展开更多
关键词 调制分类 特征选择 核主分量分析 线性判别 模板匹配
在线阅读 下载PDF
一种新颖的基于Gabor-LDA的人脸识别方法 被引量:5
16
作者 鲁广英 潘静 庞彦伟 《工程图学学报》 CSCD 北大核心 2006年第4期120-124,共5页
为了克服光照、表情变化等因素对人脸识别的影响,提出了一种基于Gabor小波和最佳鉴别分析LDA的人脸识别方法。该方法充分利用了LDA得到的鉴别向量,用鉴别向量组成线性变换矩阵,直接从原始的强度图像上提取LDA特征。然后,用鉴别向量选择... 为了克服光照、表情变化等因素对人脸识别的影响,提出了一种基于Gabor小波和最佳鉴别分析LDA的人脸识别方法。该方法充分利用了LDA得到的鉴别向量,用鉴别向量组成线性变换矩阵,直接从原始的强度图像上提取LDA特征。然后,用鉴别向量选择一些鉴别像素,仅在鉴别像素的位置上提取Gabor特征并对Gabor特征作LDA变换得到另一种LDA特征。它们分别可视为全局特征和局部特征。最后的分类器融合这两类特征。在FERET人脸库上的试验表明了该方法的有效性。 展开更多
关键词 计算机应用 人脸识别 最佳鉴别分析 lda特征提取
在线阅读 下载PDF
结合零空间法和F-LDA的人脸识别算法 被引量:2
17
作者 王增锋 王汇源 冷严 《计算机应用》 CSCD 北大核心 2005年第11期2586-2588,共3页
线性判别分析(LDA)是一种常用的线性特征提取方法。传统LDA应用于人脸识别时主要存在两个问题:1)小样本问题,即由于训练样本不足引起矩阵奇异;2)优化准则函数并不直接与识别率相关。提出了一种新的能同时解决以上两个问题的基于LDA的人... 线性判别分析(LDA)是一种常用的线性特征提取方法。传统LDA应用于人脸识别时主要存在两个问题:1)小样本问题,即由于训练样本不足引起矩阵奇异;2)优化准则函数并不直接与识别率相关。提出了一种新的能同时解决以上两个问题的基于LDA的人脸识别算法。首先,通过重新定义样本的类内散布矩阵和类间散布矩阵,提出了一种新的零空间法。然后把这种新的零空间法与F-LDA(Fractional LDA)算法相结合,得到一种对人脸识别更有效的特征提取方法。实验结果表明,这种新算法具有较高的识别率。 展开更多
关键词 线性判别分析 零空间法 F—lda(fractional—lda)
在线阅读 下载PDF
基于DCT与LDA的仿生人脸识别研究 被引量:6
18
作者 周书仁 邵晶 蒋加伏 《计算机工程与应用》 CSCD 北大核心 2011年第13期208-211,共4页
针对基于DCT变换与LDA的人脸识别方法识别率低和特征提取过程中维数也低,以及基于K-L变换的仿生人脸识别方法识别率高和特征提取过程中维数也过高的问题,结合两者的优点,提出了一种基于DCT与LDA变换的仿生人脸识别的方法。通过DCT变换与... 针对基于DCT变换与LDA的人脸识别方法识别率低和特征提取过程中维数也低,以及基于K-L变换的仿生人脸识别方法识别率高和特征提取过程中维数也过高的问题,结合两者的优点,提出了一种基于DCT与LDA变换的仿生人脸识别的方法。通过DCT变换与LDA对训练人脸样本进行特征提取,通过核函数将提取的特征映射到高维空间,构建各类样本的覆盖区域,再通过判断待识别人脸特征在各覆盖区域的归属情况来识别人脸。在Yale和ORL人脸库上的实验证明提出的方法取得了较好的识别效果。 展开更多
关键词 离散余弦变换(DCT) 线性鉴别分析(lda) 仿生模式识别 高维空间覆盖
在线阅读 下载PDF
基于2D-PCA的两级LDA人脸识别方法 被引量:3
19
作者 王友钊 潘芬兰 黄静 《计算机工程》 CAS CSCD 2014年第9期243-247,共5页
线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以... 线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以解决小样本问题,并连续应用Fisher准则和修改后的Fisher准则连接2个投影子空间,获取包含LDA的4个信息空间的最优投影方向,利用2D-PCA对输入样本做预处理,以减少计算复杂度。在ORL和YALE人脸库上的实验结果表明,该方法虽然训练时间略有增加,但识别率分别为92.5%和95.8%,优于其他常用LDA算法。 展开更多
关键词 线性鉴别分析 直接线性鉴别分析 二维主成分分析 小样本问题 人脸识别 特征提取
在线阅读 下载PDF
在小样本条件下直接LDA的理论分析 被引量:4
20
作者 赵武锋 沈海斌 严晓浪 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2632-2636,共5页
直接线性鉴别分析(DLDA)是一种以克服小样本问题而提出的LDA扩展方法,被声明利用了包含类内散布矩阵零空间外的所有信息。然而,很多反例表明事实并非如此。为了更深入地了解DLDA的特性,该文从理论上对其进行了分析,得出结论:基于传统Fis... 直接线性鉴别分析(DLDA)是一种以克服小样本问题而提出的LDA扩展方法,被声明利用了包含类内散布矩阵零空间外的所有信息。然而,很多反例表明事实并非如此。为了更深入地了解DLDA的特性,该文从理论上对其进行了分析,得出结论:基于传统Fisher准则的DLDA几乎没利用零空间,将丢失一些有用的鉴别信息;而基于广义Fisher准则的DLDA,若满足一定条件(在高维小样本数据应用中一般都满足)且最优鉴别矢量正交约束,则其等价于零空间LDA和正交LDA。在人脸数据库ORL和YALE上的比较实验结果亦与理论分析一致。 展开更多
关键词 模式识别 FISHER准则 降维 线性鉴别分析 小样本
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部